Shin-Etsu Silicone Products Guide Highly Functional Silicone Products Lineup

Flexible Silicone Conductive Paste

UV Cure RTV Silicone Rubbers

Radical Polymerization Type Temporary Adhesive Silicones

Low Elasticity RTV Silicone Rubbers

Polyimide Silicone Primers

Silicone Gel for Protecting Electrodes

Conductive Polyimide Silicone Silver Paste

High Hardness Die Bond Materials

Visible Light Shielding Silicone Encapsulants

One-component Addition Cure Type
RTV Silicone Rubber High Strength Elastic Adhesive

Shin-Etsu Silicone Makes
Various Devices More Reliable
and Expands Product Design
Potential.

Contents

Features of Silicone
Flexible Silicone Cunductive Paste — 4
UV Cure RTV Silicone Rubbers —Three Cure Types— 6
Radical Polymerization Type RTV Silicone Rubbers KER-43XX-UV Series 7
UV Addition Type RTV Silicone Rubbers 8
UV Addition Type Optical Bonding Silicones LOCA 9
Radical Polymerization Type Temporary Adhesive Silicones 10
Application Examples in Various Devices11
Low Elasticity RTV Silicone Rubbers 12
Polyimide Silicone Primers 14
Silicone Gel for Protecting Electrodes 16
Functional RTV Silicone Rubbers 17
Conductive Polyimide Silicone Silver Paste17
High Hardness Die Bond Materials17
Visible Light Shielding Silicone Encapsulants 18
One-component Addition Cure Type RTV Silicone Rubber 19 High Strength Elastic Adhesive

Features of Silicone

Silicones have an amazing array of properties.

Silicones consist of a main chain of inorganic siloxane linkages (Si-O-Si) plus side chains which contain organic groups.

Silicones are hybrid polymers that contain both inorganic and organic components.

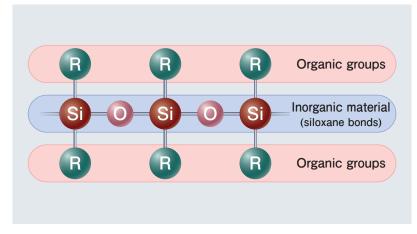
The main chain of a silicone consists of siloxane linkages which are stable and have a high bonding energy.

Compared to organic polymers, which have a carbon backbone (C-C/bonding energy: 85 kcal/mol), silicones have superior heat resistance and weatherability (UV light, ozone).

This is due to the greater stability of siloxane bonds, which have a bonding energy of 106 kcal/mol.

With their long bond length and high bond angle, siloxane bonds have weak intermolecular forces and move freely.

Siloxane bonds have a bond length of 1.64 Å and bond angle of 134°. Compared to carbon bonds (bond distance: 1.54 Å, bond angle: 110°), they have a long bond distance, high bond angle, and a low rotational energy barrier. As a result, siloxane bonds move more freely and intermolecular forces are weak. These characteristics manifest themselves in features of the silicone material, including softness, gas permeability, cold resistance, and small changes in viscosity due to temperature changes.


The molecules of silicone polymers are covered by hydrophobic methyl groups, and surface energy is low.

The backbone of a silicone polymer molecule is a twisted helical structure. The molecules are almost completely covered by hydrophobic methyl groups, and surface energy is low. This gives rise to unique properties including water repellency and easy release.

Furthermore, silicones are low-polarity polymers so they exhibit low moisture absorption.

Silicones: compounds which feature a main chain of siloxane bonds

Features attributable to siloxane linkages



Water repellency Release properties

Cold resistance Compression characteristics

Features attributable to molecular structure

Helical (spiral) structure Intermolecular forces are weak

- Flame resistance

- Weatherability
- Radiation resistance
- Chemical stabilityElectrical properties

Si-O bonds 106kcal/mol C-C bonds 85kcal/mol C-O bonds 76kcal/mol

Flexible Silicone Conductive Paste

SCP-101

Features

- Excellent elasticity and consistent bending properties after curing
- Circuit formation by screen printing is possible.
- UV irradiation + room-temperature or heat curing is possible.
- Excellent adhesion to silicone rubber base material

Application Examples

Circuit formation conductive paste for flexible packages

General Properties

Parameter Product name	SCP-101				
Appearance	Grayish white				
Viscosity at 23°C 10 [1/s] Pa·s	41				
Viscosity at 23°C 2 [1/s] Pa·s	105				
Storage temperature	≤0°C				
Standard curing conditions	Metal halide lamp 6,000mJ+23℃×12h				
Density at 23°C g/cm³	NA*1	5.34**2			
Hardness Durometer A	NA*1	10*2			
Tensile strength MPa	NA*1	0.3*2			
Elongation at break %	NA*1	65*2			
Thermal conductivity W/mk	NA*1	3.2*2			
Adhesion (cross cut adhesion test) silicone rubber	100/100	100/100			

^{%1} Rubebr thickness: 0.08 mm, not measurable due to thin film

*2 Rubber thickness 1.0 mm

(Not specified values)

Volume Resistivity Data

Standard curing conditions	Metal-halide lamp 6,000mJ+23℃×12h	120℃×1h	
Initial Ω-cı	Not measurable (Immediately after UV irradiation)	2×10 ⁻⁴ (After heat curing)	
After 12 h at 23℃ Ω-cı	4 ×10 ⁻⁴	-	

(Not specified values)

Durability Test Data

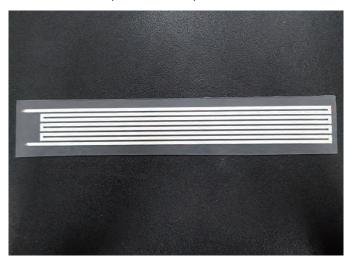
Durability Test		Initial	500 h	1,000 h
After high temperature exposure (120℃)	Ω-cm	4× 10 ⁻⁴	1×10 ⁻⁴	2×10 ⁻⁴
After high temperature and humidity exposure(85℃/85% RH)	Ω-cm	4× 10 ⁻⁴	8× 10 ⁻⁵	5×10 ⁻⁵

 $^{^{\}star}$ Test samples prepared under the conditions of 6,000mJ + 23 $^{\circ}\!\text{C} \times$ 12 h by metal halide lamp

(Not specified values)

Substrate: KE-106 (high strength silicone rubber) Thickness: 1.0 mm SCP-101: $5.0 \text{ mm} \times 60.0 \text{ mm}$ Thickness: 0.04 mm

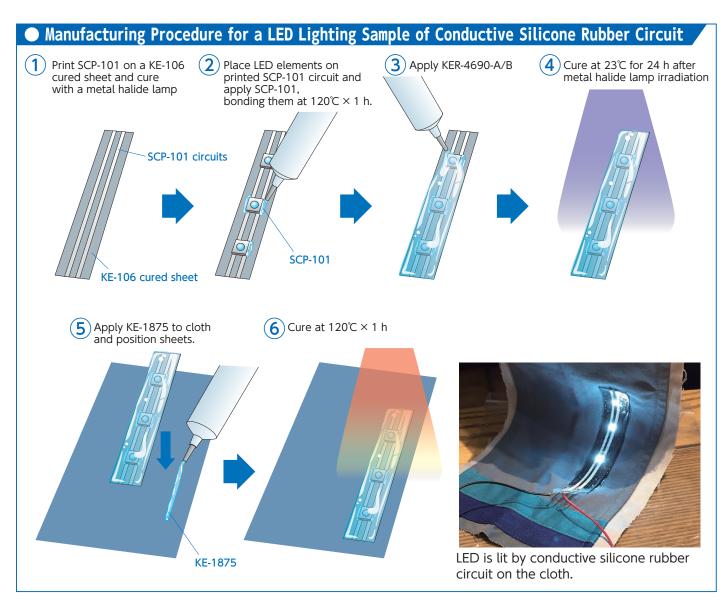
● Volume resistivity change during elongation


Cure conditions	Elongation rate: 10%	Elongation rate: 20%
UV cure	4 times	17 times
Heat cure	9 times	50 times

Circuit Formation by Screen Printing

Substrate: KE-106 (high strength silicone rubber) Thickness: 1.0 mm

Silver paste Thickness: 0.04 mm


Overcoat material (silicone rubber) Thickness: 1.0 mm

Circuit formation example

Excellent flexibility

UV Cure RTV Silicone Rubbers

Three Cure Types

Shin-Etsu offers a wide variety of UV cure RTV silicone rubbers, including a fast curing radical-polymerization type, a UV addition type that is irradiated with UV light and then cures fully at room temperature or with heating, and a combination of radical and condensation types that cures via condensation reaction in sections where the UV rays can't reach. Therefore, it is possible to select an appropriate curing type depending on the usage and application.

Radical Polymerization Type
Features: Rapid cure

UV Cure RTV Silicone Rubbers

UV Addition TypeFeatures: Delayed cure

Combination of Radical and Condensation Type
Features:
Shaded section cure (dual cure)

■ Types and features of UV cure RTV silicone rubbers

Type Parameter		Radical Polymerization	UV Addition	Combination of Radical and Condensation
Features		Rapid cure, Low to high hardness Both silicone and polyimide silicone available	Parts can be laminated after UV irradiation (process reversal). Ultra-low shrinkage with room-temperature curing Shortened cure time with low-temperature heating	Cures by condensation reaction in sections where UV light won't reach
By-product		-	-	Alcohol or acetone
	UV	Rapid	Slow	Rapid
Curability	Heating	NA	Room temperature to 80°C×1 h	NA
	Moisture	NA	NA	> 1 day *1
	Oxygen	Inhibits curing	No effect	Inhibits curing *2
Cure inhibition factors	S·N·P compound	No effect	Inhibits curing	No effect
-iactors	Acids, alcohols, etc.	No effect	Inhibits curing	Inhibits curing

^{*1} The time required for curing depends on the thickness.

For curing properties of condensation reaction type, please refer to the catalog of RTV silicone rubbers for electrical & electronic applications.

^{*2} Oxygen-inhibited areas are cured by condensation reaction.

Radical Polymerization Type RTV Silicone Rubbers

KER-43XX-UV Series

Features

- Processing time shortened by UV irradiation.
 After curing, it becomes a flexible elastomer and reduces stress.
- Low cure shrinkage optimal for securing precision parts <0.1%
- Excellent heat resistance and durability for hygroscopic reflow mounting

Application Examples

 Fixing of sensors and precision glass components

General Properties

Parameter	Product name	KER-4301-UV	KER-4302-UV	KER-4303-UV	KER-4304-UV	KER-4320-UV
Brief description		Transparent, flowable	Transparent, thixotropic	Resistant to oxygen inhibition hygroscopic reflow resistance flowable	Resistant to oxygen inhibition hygroscopic reflow resistance thixotropic	Hygroscopic reflow resistance thixotropic
Reaction mechan	ism	Radical	Radical	Radical	Radical	Radical
Appearance		Colorless transparent	Colorless transparent	Yellow transparent	Yellow transparent	Yellow transparent
Viscosity	mPa•s	7,000	20,900	5,500	20,400	15,000
Refractive index		1.44	1.44	1.44	1.44	1.44
	UV light source			Metal halide lamp		
Standard curing	Illuminance* mW/cm²	100	100	100	100	100
conditions	Irradiation time s	40	40	40	40	40
	Estimated light intensity mJ/cm ²	4,000	4,000	4,000	4,000	4,000
Density at 23℃	g/cm³	1.10	1.13	1.10	1.12	1.13
Hardness	Durometer A	41	54	41	56	16
Tensile strength	MPa	4.0	4.0	2.6	3.8	2.1
Elongation at bre	eak %	110	100	100	80	320
Tensile lap-shear str	rength (glass/glass) t=460 μm MPa	1.2	1.3	0.9	1.2	0.9 (t=80µm)
Cure shrinkage	%	< 0.1	< 0.1	< 0.1	< 0.1	_
Light transmissivity 400 nm/2.0 mm %		90	81	39	34	_
Moisture transmissivity 40°C×24 h/1.3 mm g/cm²		46.6	46.6	52	46.1	51.8
LED-UV (365nm) a	LED-UV (365nm) applicability		0	0	0	0
Atmospheric air	cure	×	×	0	0	×
Refrigeration sto	orage	Unnecessary	Unnecessary	Unnecessary	Unnecessary	Unnecessary

*Illuminance at 365 nm (Not specified values)

UV Addition Type RTV Silicone Rubbers

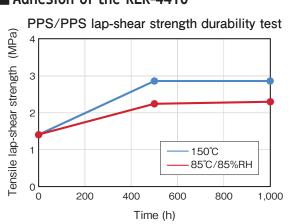
Features

- Step cure: 3,000mJ/cm² + 23°C×24h ※Recommended light source: UV-LED (365nm)
- Parts can be fixed and laminated after UV irradiation. (Process reversal is possible.)
- Ultra-low shrinkage with room-temperature curing
- Cure time can be shortened by low-temperature heating

Application Examples

Fixing of sensors and precision glass parts

General Properties


Parameter	Product name	KER-4410	KER-4510	KER-4690-A/B	KER-4691-A/B
Brief description		Adhesion, room-temperature curing possible	Adhesion, low-temperature curing	Non-adhesive, high-definition transfer	Non-adhesive, high-definition transfer
Reaction mechani	SM	Addition	Addition	Addition	Addition
Appearance		Colorless slightly cloudy	Colorless slightly cloudy	Colorless transparent	Colorless transparent
Viscosity	mPa·s	59,000	30,000	3,000	80,000
	UV light source		UV-LED	(365nm)	
Recommended	Illuminance mW/cm ²	100	100	100	100
curing conditions	Irradiation time sec	30	30	30	30
Estimated light intensity mJ/cm²		3,000	3,000	3,000	3,000
Curing conditions	after UV irradiation	80℃×1h or 23℃×24h	60℃×1h	23℃×24h	23℃×24h
Density at 23°C g/cm³		1.06	1.04	1.03	1.09
Hardness	Durometer A	15	50	56	42
Tensile strength	MPa	2.3	6.6	6.6 7.9	
Elongation at bre	ak %	350	530	110	420
Tensile lap-shear strength MPa		1.6 (AL/AL) 1.7 (PBT/PBT) 1.4 (PPS/PPS)	2.2(GL/GL)	NA	NA
Light transmissivi	ty 400 nm, t=2.0 mm %	NA	87	90	NA
Cure shrinkage	%	_	_	< 0.1	< 0.1
Atmospheric air c	ure	0	0	0	0
Refrigeration stor	rage	Necessary	Necessary	Unnecessary	Unnecessary

(Not specified values)

■ Curability of the KER-4410

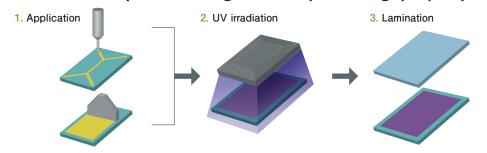
Curability (3,000mJ/after cm² radiation) 4.5 4.0 3.5 Torque(dN·m) 3.0 2.5 2.0 1.5 23°C 30℃ 1.0 40°C 0.5 0.0 50 100 200 Time (min)

■ Adhesion of the KER-4410

UV Addition Type Optical Bonding Silicones

LOCA = Liquid Optical Clear Adhesive

Features


- One-component so mixing is unnecessary.
- Step cure: 3,000mJ/cm² + 23°C×24h **Recommended light source: UV-LED(365nm)
- Curing time can be adjusted by changing UV irradiation conditions.
- Low risk of color unevenness and heat resistance to discoloration is excellent.
- Lamination after UV irradiation is possible due to process reversibility of UV addition cure type.
- LOCA curability can be ensured, even in areas not irradiated with UV rays.

Application Examples

Touch panel lamination

■ Lamination process using the "delayed curing" property of the UV addition type

Point

The use of the UV addition (delayed curing) type makes it possible to irradiate the material first and then laminate the pieces. This ensures the LOCA curability even in areas not irradiated with UV rays

General Properties

Product name Parameter		KER-4530	KER-4551	KER-4531	KER-4532	KER-4580	
Brief description			Low viscosity, gel	Medium viscosity, gel	Medium viscosity, gel	High viscosity, gel	Thixotropic, gel
Reaction mechani	sm		Addition	Addition	Addition	Addition	Addition
Appearance			Colorless transparent	Colorless transparent	Colorless transparent	Colorless transparent	Colorless slightly cloudy
Viscosity		mPa•s	4,000	10,000	25,000	95,000	4,000
Refractive index			1.41	1.40	1.41	1.41	1.44
	UV lig	ht source			UV-LED (365nm)		
Recommended	Illumin	nance mW/cm ²	100	100	100	100	100
curing conditions	uring conditions Irradiation time s		30	30	30	30	15
Estimated light intensity mJ/cm²		3,000	3,000	3,000	3,000	1,500	
Curing conditions after UV irradiation			23°C×24h				
Density at 23℃		g/cm	0.97	0.97	0.97	0.97	1.04
Hardness		Durometer A	5	NA	NA	NA	NA
nai uness		Penetration	NA	30	30	35	37
Tensile strength		MPa	0.3	NA	NA	NA	0.2
Elongation at bre	ak	%	550	1,200	NA	NA	660
Cross adhesion strength MPa		0.5	0.3	0.3	0.3	0.4	
Light transmissivity 400 nm, t=310μm %		> 99	> 99	> 99	> 99	> 99	
LED-UV (365nm) a	pplicat	pility	0	0	0	0	0
Atmospheric air c	ure		0	0	0	0	0
Refrigeration stor	age		Necessary	Necessary	Necessary	Necessary	Necessary

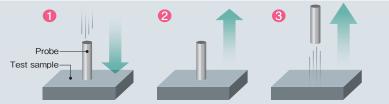
Radical Polymerization Type Temporary Adhesive Silicones

Featuress

- Various levels of adhesion and hardness are available.
- They have stable adhesion and resilience (excellent repeat durability).
- Excellent adhesive strength after high-temperature exposure

Application Examples

Temporary adhesive silicone pad for transfer of microelectronic components

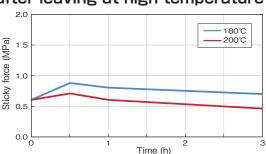

Application Examples

Product name Parameter		STP-102-UV	STP-103-UV	STP-104-UV	STP-106T-UV
Brief description		Medium sticky force	Medium sticky force Low sticky force, ultra low viscosity Low sticky force		Low sticky force, thixotropic
Reaction mechan	ism	Radical	Radical	Radical	Radical
Appearance		Pale yellow transparent	Pale yellow transparent	Pale yellow transparent	Pale yellow translucent
Viscosity	mPa•s	1,650	170	290	250,000
	UV light source		UV-LED (365nm)*	
Recommended	Illuminance mW/cm²	100	100	100	100
curing conditions	Irradiation time s	80	80	80	80
Estimated light intensity mJ/o		8,000	8,000	8,000	8,000
Density at 23℃	g/cm³	1.08	1.05	1.08	1.14
Hardness	Durometer A	24	28	37	33
Tensile strength	ngth MPa 2.8		2.8	4.1	1.9
Elongation at br	eak %	250	210	240	170
Sticky force 200	mm/min MPa	1.30	0.62	2.07	0.40
Tensile lap-shear strength (glass/glass) t = 230 μm MPa		8.5	7.0	10.8	5.9
Atmospheric air	cure	×	×	×	×
Refrigeration sto	orage	Unnecessary	Unnecessary	Unnecessary	Unnecessary

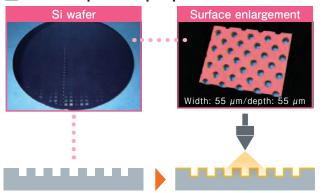
*When cured with a high-pressure mercury lamp, no adhesive strength develops.

(Not specified values)

Adhesion measurement method

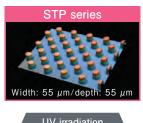

Testing method

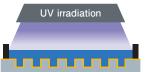
1. The tip of the probe is pressed against the sample of silicone with a force of 1.0 MPa for 15 seconds.

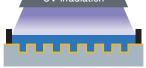

2. The probe is then peeled off at a rate of 200mm/min. taken to pull a part the probe from material sample.

Surface area of the probe (that makes contact with material sample) needs to be calculated by unit area and this value is the sticky force. Sticky force is derived from the maximum strength.

Sticky force of STP-103-UV after leaving at high temperature




Transcriptional properties of the STP series

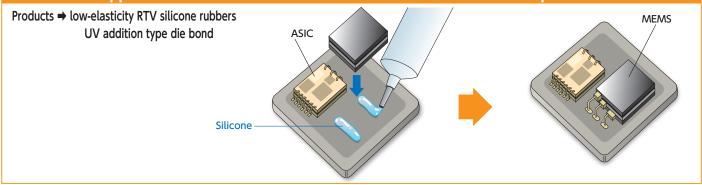


Fine irregularities are formed on a Si wafer.

Fluorinated mold release agent applied

Remove air bubbles from fine holes by evacuation. Cure by UV irradiation (8,000mJ/cm²)

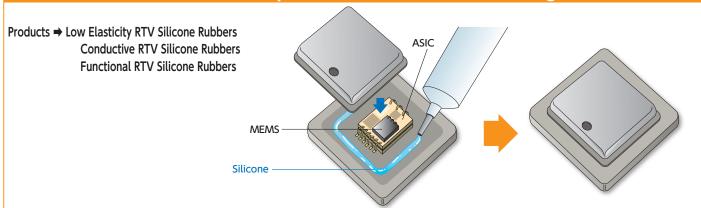
Appearance of the cured product

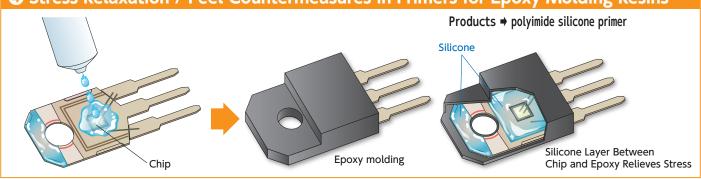


Remove the STP series from the Si wafer

Application Examples in Various Devices

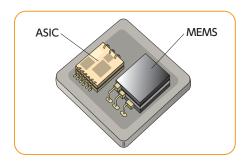
Four possible uses in response to demand for smaller and more accurate devices, ICs, and MEMS chip


1 Precision Application/Stress Relaxation Countermeasures for MEMS Chip Die Bond Materials


2 Stress Relaxation Countermeasures in Electrode-protecting Materials for MEMS Chip

3 Water Proof / Static Electricity Countermeasures for Lid Sealing Materials

4 Stress Relaxation / Peel Countermeasures in Primers for Epoxy Molding Resins

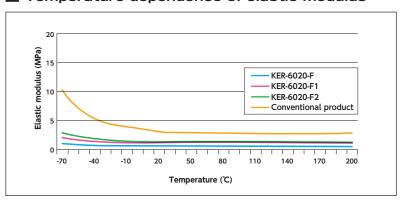

Low Elasticity RTV Silicone Rubbers

Features

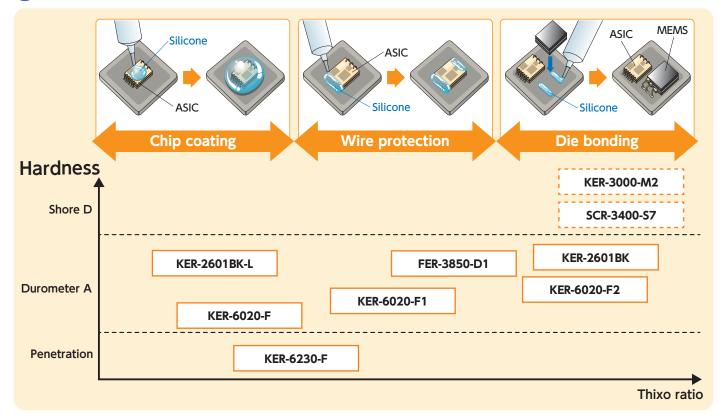
- Rubber elasticity remains consistent from -60°C to +200°C.
- Consistent application reproducibility can contribute to improved chip mounting accuracy.
- Products available in different viscosities for a variety of packaging formats.
- Syringe packaging available for small-volume projects.

Application Examples

MEMS such as pressure sensors and MEMS microphones,
 ASIC die bonding materials, wires,
 and coating materials for electrodes


Precision application is possible using a jet dispenser.

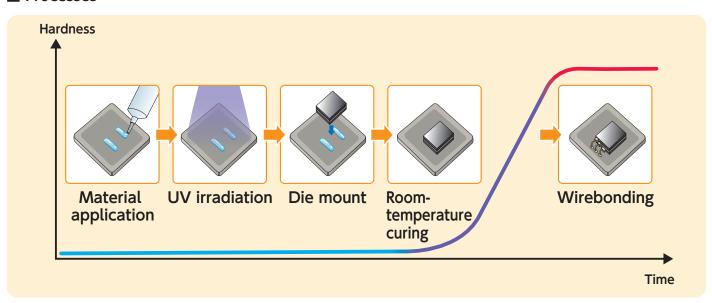
General Properties


Product name Parameter	KER-6020-F	KER-6020-F1	KER-6020-F2	KER-2601BK	KER-2601BK-L	KER-6230-F	FER-3850-D1
Duinf decembring	Cold resistant	Cold resistance	Cold resistance	Black color	Black color	Illera lam bandasas	0'1'
Brief description	Low hardness	Low hardness	Low hardness	Noise countermeasure	Noise countermeasure	Ultra-low hardness	Oil resistance
Appearance	Creamy white translucent	Creamy white translucent	Creamy white translucent	Black color	Black color	Creamy white translucent	White
Viscosity at 23℃ Pa•s	23	69	100	25	16	33	65
Thixo ratio (BH7-10/20)	1.3	1.5	1.6	1.8	1.1	-	-
Storage temperature	≦10℃	≦10℃	≦10℃	≦10℃	≦10℃	≦10℃	≦10℃
Standard curing conditions	150℃×1h	150℃×1h	150℃×1h	150℃×2h	150℃×2h	130°C×30min	120℃×1h
Density at 23°C g/cm³	1.06	1.07	1.09	1.05	1.04	1.04	1.41
Hardness Durometer A	20	26	31	46	45	40 (Penetration)	24
Elongation at break %	220	230	200	120	210	-	230
Tensile strength MPa	1.1	1.8	1.7	4.3	5.7	-	0.4
Tensile lap-shear strength MPa	0.3	0.8	1	1	3.1	-	1.5
Die share strength (Si/Ag) MPa	3.2 (Si 1mm²□)	3.9 (Si 1mm²□)	5.3 (Si 1mm²□)	-	-	-	-
Coefficient of linear expansion at 23°C ppm/°C	480	400	360	-	-	400	310
Modulus of elasticity MPa	0.7	1.1	1.4	-	-	-	-
Volume resistivity TΩ·m	53.9	47.7	35.5	8.3×10³	1.8×10⁴	3	-
Dielectric breakdown strength kV/mm	25	29	26	-	-	20	-
Relative permittivity 50 Hz	2.9	2.9	3.1	-	-	3	-
Dielectric dissipation factor 50 Hz	4.9×10 ⁻⁴	5.8×10 ⁻⁴	6.8×10 ⁻⁴	-	-	5×10 ⁻⁴	-

(Not specified values)

Temperature dependence of elastic modulus

Material Selection Map by Application



Application of UV Addition Cure Type RTV Silicone Rubbers to Die Bonding Material

By UV irradiating before die mounting, materials will cure at room temperature after mounting, therefore eliminating the need for heating.

- Potential benefits
 - 1) Prevention of misalignment of the tip during heating
 - 2 Reducing stress on the chip
 - 3 It is also possible to shorten the curing time by low-temperature heating.

Processes

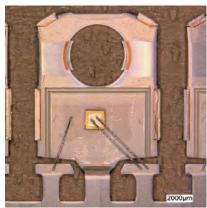
Polyimide Silicone Primers

KER-44XX Series

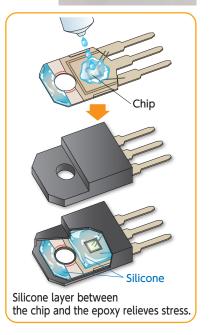
Features

- Excellent adhesion to epoxy molding resins and metal frames
- Products available in different viscosities for a variety of packaging formats
- Low-temperature curing type at 150°C
- Cures to become an elastic film. Can be effective as a stress-relieving layer.

1


Application Examples

● ICs in power & logic circuits, capacitors, sensors, thermistors, etc.


Instructions for Use

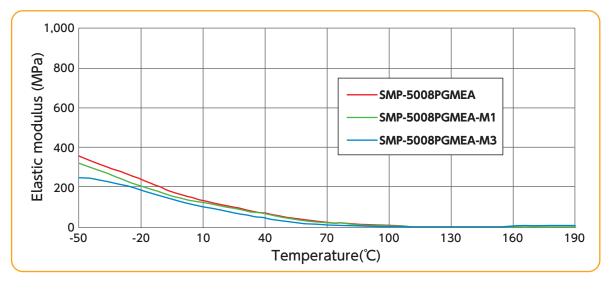
Apply using jetting system, pressurized dispenser, spraying, dipping, etc.

Evaluating Adhesion to Lead Frames & Epoxy Molding Resins

- Hygroscopic reflow test (MSL-1): 85°C / 85%RH×168h ⇒ Reflow cycle performed 3 times
- Package: TO-247 (substrates: AMB Cu-SiN, chips: SiC-SBD)

Appearance	Before testing	After testing		
Conditions	SAT results	SAT results	SEM images of cross sections	
Treated with SMP-5008PGMEA	222		NAD	
Untreated			Peel-off	

- **Thermal cycle test**: -40°C⇔175°C × 1,000cycle
- Packages: TO-247 (substrates: AMB Cu-Sin, chips: SiC-SBD)


Appearance	Before testing	After testing
Conditions	SAT results	SAT results
Treated with SMP-5008PGMEA		8
Untreated	NAD	Peel-off

General Properties

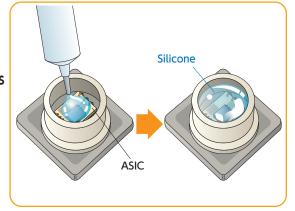
Param		uct name	SMP-5008PGMEA	SMP-5008PGMEA-M1	SMP-5008PGMEA-M3	
Appearance		Dark brown				
ing	Viscosity at 25℃	Pa•s	0.3	1.0	3.0	
Before curing	Nonvolatile content 105°C × 3 h	wt%	30	32.7	33.5	
Befo	Specific gravity at 25℃		1.03	1.03	1.03	
	Solvent		Propyle	ene glycol monomethyl ether	acetate	
Standa	Standard curing conditions		50	50℃×30min+100℃×1h+150℃×2h		
	Tensile strength	MPa	20	13	14	
	Elongation at break	%	360	290	290	
	5% weight loss temperature	$^{\circ}$	360	420	380	
	Modulus of elasticity at 25℃	MPa	200	100	150	
ıring	Тд	$^{\circ}$	120	90	98	
After curing	Coefficient of linear expansion at 25℃	ppm	200	250	242	
¥	Volume resistivity	TΩ•m	45	58	71	
	Dielectric breakdown strength	kV/mm	14	14	14	
	Relative permittivity 50 Hz		2.5	2.4	2.8	
	Dielectric dissipation factor 50 Hz		3.4 × 10 ⁻³	3.2 × 10 ⁻³	3.2 × 10 ⁻³	
	Moisture absorption ratio: 85°C/85% RH	× 24 h %	< 0.1	< 0.1	< 0.1	

(Not specified values)

SMP-5008PGMEA Elastic Modulus Data

Handring precautions

- SMP-5008PGMEA-M1 and SMP-5008PGMEA-M3 may thicken over time due to fillers. Please use a centrifugal stirring mixer to loosen the material before use. Recommended conditions for centrifugal stirring mixer: 1,300rpm × 30sec.
- Please avoid defoaming by vacuum before coating because this product is diluted with solvents.
- Since each product has a low viscosity, the air pressure dispenser generates liquid dripping.
 Please use a jet dispenser or a spray dispenser.


Silicone Gel for Protecting Electrodes

Features

- Gel state remains consistent from -60°C to +150°C.
- Consistent, precise application using a dispensing or jetting system.
- Solves a variety of issues related to waterproofing specifications of pressure sensors, etc.

Application Examples

- Electrodes such as pressure sensors
- Wire protection

General Properties

Parar	Product name neter	FE-74	FE-73-BK	FE-78-A/B
Brief o	description	Oil and solvent resistance	Black color, oil and solvent resistance	Two-component, oil and solvent resistance
	Appearance	Colorless slightly cloudy	Black color	A/B: colorless transparent
ıring	Viscosity at 23℃ Pa•s	0.7	2.5	A:0.8 B:0.6
Before curing	Mixed viscosity at 23℃ Pa∙s	-	-	0.7
Befc	Specific gravity at 25℃	1.21	1.28	A/B: 1.22
	Storage temperature	-10℃ ~ 10℃	-10℃ ~ 10℃	0℃ ~ 30℃
Standa	ard curing conditions	125℃ × 2h	125℃ × 2h	100℃ × 2h
	Penetration 1/4 cone	90	65	65
	Volume resistivity TΩ-m	0.02	0.02	0.005
uring	Dielectric breakdown strength kV/mm	14	14	14
After curing	Relative permittivity 50 Hz	7.0	7.0	7.0
Ā	Dielectric dissipation factor 50 Hz	1 × 10 ⁻¹	2 × 10 ⁻¹	1 × 10 ⁻²
	Complex shear modulus 10 Hz	1,200	6,000	13,000

(Not specified values)

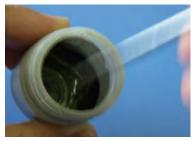
Paran	Product name neter	KER-6201	KER-6201-BK	KER-2201
Brief o	description	Cold resistance	Black color, cold resistance	Excellent defoaming property
ng	Appearance	Colorless slightly cloudy	Black color	Colorless transparent
e curing	Viscosity at 23°C Pa·s	0.8	0.8	0.8
Before	Specific gravity at 25℃	0.98	0.98	0.97
	Storage temperature	-10℃ ~ 10℃	-10℃ ~ 10℃	-10℃ ~ 10℃
Standa	ard curing conditions	100°C × 2h	100°C × 2h	100°C × 2h
	Penetration 1/4 cone	90	90	65
	Volume resistivity $T\Omega \cdot m$	8.0	2.0	10
curing	Dielectric breakdown strength kV/mm	14	14	14
After c	Relative permittivity 50 Hz	3.0	2.8	3.0
∢	Dielectric dissipation factor 50 Hz	5 × 10 ⁻⁴	3 × 10 ⁻⁴	5 × 10 ⁻⁴
	Complex shear modulus 10 Hz Pa	2,200	2,200	2,000

Functional RTV Silicone Rubbers

Conductive Polyimide Silicone Silver Paste

Features

- SMP-2840 is a conductive polyimide silicone silver paste that combines polyimide and RTV silicone rubbers.
- Excellent crack resistance to heat cycle test and moisture absorption reflow resistance.


Application Examples

- Lid seal for preventing static electricity in the sensor module
- Conductive die bond for LED devices

General Properties

Parameter Product name		SMP-2840	
Brief c	description	Excellent crack resistance	
	Appearance	Gray	
ಹ	Viscosity at 23℃ Pa·s	30	
curi	Nonvolatile content (volume ratio) Wt %	86 (50)	
Before curing	Solvent	Polyethylene glycol dimethyl ether	
Bei	Density at 23℃ g/cm³	3.4	
	Storage temperature	-40℃ ~ -20℃	
Standa	ard curing conditions	100°C × 2h + 150°C × 1h	
	Density at 23°C g/cm³	5.6	
	Tg ℃	185	
ring	Coefficient of linear expansion $(\alpha 1/\alpha 2)$ ppm/°C	40 / 160	
After curing	Volume resistivity Ω ·cm	5.8 × 10 ⁻⁵	
Afte	Thermal conductivity W/m·K	1.0	
	Thermal resistance (BLT) mm ² •K/W	8 (7µm)	
	Die share strength (Si /Ag) MPa	23.6 (Si 1mm²□)	

(Not specified values)

Precautions

- Silver filler may settle during storage. Please be sure to stir thoroughly before use.
- ●Please use in an environment at 23°C or higher.

High Hardness Die Bond Materials

Features

• RTV silicone rubber high hardness die bond material with high die shear strength

Application Examples

- Die bonding of LED devices
- Fixing of the sensor chip

General Properties

Parameter Product name	KER-3000-M2	SCR-3400-S7	KER-3201-T3	KER-4033-D2
Brief description	High hardness	High strength	Thermal conductivity	Cure inhibition countermeasure
Appearance	Creamy white translucent	Creamy white translucent	White	Pale yellow translucent
Viscosity at 23℃ Pa•s	40	7	24	16
Storage temperature	≦10℃	≦10℃	≦10℃	≦10℃
Standard curing conditions	150℃×2h			
Density at 23℃ g/cm³	1.15	1.16	2.35	1.16
Hardness Shore D	56	78	71	72
Tensile lap-shear strength (Al/Al) MPa	3.9	9.6	3.9	_
Die share strength Ag / ☐ 33mil MPa	15.7	28	20.2	29.3
Thermal conductivity W/m·K	0.2	0.2	1.36	0.2
Glass transition temperature °C	-123	80	-123	-123

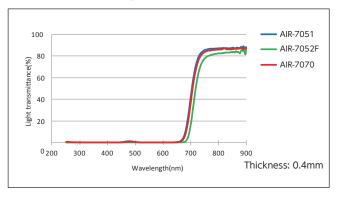
Visible Light Shielding Silicone Encapsulants

- Features
- Shields light up to 650nm but allows light over 700nm to be transmitted.
- Based on silicone polymers and exhibits high reliability
- Hardness that can be diced after curing but has high extensibility
- Application Examples
- In-vehicle IR sensors, etc.

Product name Parameter	AIR-7051-A/B	AIR-7052F-A/B	AIR-7070-A/B
Features	Standard product	Improved heat resistance	High hardness
Appearance	A: Black B: colorless transparent	A: Black B: colorless transparent	A: Black B: colorless transparent
Viscosity mPa•s	A=14,000 B=20	A=36,000 B=20	A=24,000 B=30
Proportional combination	A:B=1:1		
Mixed viscosity mPa·s	160	400	300
Standard curing conditions	100°C×1h + 150°C×4h		
Hardness Durometer D	45	54	73
Elongation at break %	220	200	5
Tensile lap-shear strength (Al/Al) MPa	3.9	7.4	3.1
Tensile lap-shear strength (Glass epoxy/Glass epoxy) MPa	4.7	7.1	3.7
Glass transition temperature $^{\circ}\mathrm{C}$	33	40	30

^{*}Please store the AIR-7051-A, AIR-7052 F-A, and AIR-7070-A at 0°C to 10°C.

(Not specified values)


Instructions for Use

- 1) Dispense application to the package
- 2 Transfer molding

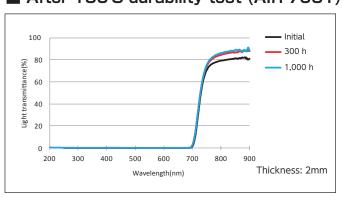


Photo: Microlens by transfer molding

■ AIR series light transmittance data

■ After 150°C durability test (AIR-7051)

One-component Addition Cure Type RTV Silicone Rubber High Strength Elastic Adhesive

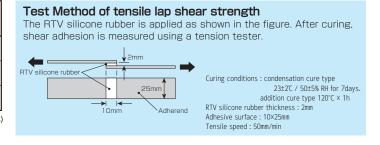
KE-8100

Higher adhesion strength than conventional products

Features

- Tensile lap-shear strength: 4.0MPa Tested substrates: Aluminum, PBT, and PPS
- Easy-to-handle one-component type (refrigerated storage required)
- Excellent performance unique to silicone, such as heat resistance, cold resistance, weatherability, and electrical insulation, remains unchanged.
- Operating temperature range -40°C to 150°C
- Standard curing conditions: 120°C × 1 h

Solutions to Customers


General Properties

Product name Parameter	KE-8100
Curing method	Addition
Before curing	
Appearance	Gray
Viscosity at 23℃ Pa∙s	120
Standard curing conditions	120℃×1 h
After curing	
Density at 23℃	1.31
Hardness Durometer A	77
Tensile strength MPa	7.1

(Not specified values)

Tensile Lap-shear Strength Test Data

Product name Substrate	KE-8100	Conventional product KE-1835S
Aluminum/Aluminum	4.1	3.0
PBT/PBT	4.0	2.6
PPS/PPS	4.0	2.4

Silicone Division Sales and Marketing Department IV

Marunouchi Eiraku Bldg., 4-1, Marunouchi 1-chome, Chiyoda-ku, Tokyo 100-0005, Japan Phone: +81-(0)3-6812-2410 Fax: +81-(0)3-6812-2415

Shin-Etsu Silicones of America, Inc.

1150 Damar Drive, Akron, OH 44305, U.S.A. Phone: +1-330-630-9860 Fax: +1-330-630-9855

Shin-Etsu do Brasil Representação de Produtos Químicos Ltda.

Rua Coronel Oscar Porto, 736 - 8° Andar - Sala 84, Paraíso São Paulo - SP Brasil CEP: 04003-003 Phone: +55-11-3939-0690 Fax: +55-11-3052-3904

Shin-Etsu Silicones Europe B.V.

Bolderweg 32, 1332 AV, Almere, The Netherlands Phone: +31-(0)36-5493170 Fax: +31-(0)36-5326459 (Products & Services: Products for Cosmetics Application)

Germany Branch

Kasteler Str. 45, 65203 Wiesbaden, Germany

Phone: +49-(0)611-71187290

(Products & Services: Products for Industrial Applications)

Shin-Etsu Silicone Korea Co., Ltd.

GT Tower 15F, 411, Seocho-daero, Seocho-gu, Seoul 06615, Korea

Phone: +82-(0)2-590-2500 Fax: +82-(0)2-590-2501

Shin-Etsu Silicone International Trading (Shanghai) Co., Ltd.

29F Junyao International Plaza, No.789, Zhao Jia Bang Road, Shanghai 200032, China Phone: +86-(0)21-6443-5550 Fax: +86-(0)21-6443-5868

Guangzhou Branch

Room 2409-2410, Tower B, China Shine Plaza, 9 Linhexi Road, Tianhe, Guangzhou, Guangdong 510610, China Phone: +86-(0)20-3831-0212 Fax: +86-(0)20-3831-0207

Shin-Etsu Silicone Taiwan Co., Ltd.

Hung Kuo Bldg. 11F-D, No. 167, Tun Hua N. Rd., Taipei, 105406 Taiwan, R.O.C.

Phone: +886-(0)2-2715-0055 Fax: +886-(0)2-2715-0066

Shin-Etsu Singapore Pte. Ltd.

1 Kim Seng Promenade #15-05/06 Great World City, Singapore 237994

Phone: +65-6743-7277 Fax: +65-6743-7477

Shin-Etsu Silicones Vietnam Co., Ltd.

Unit 4, 11th Floor, A&B Tower, 76A Le Lai Street, Ben Thanh Ward, District 1, Ho Chi Minh City, Vietnam Phone: +84-(0)28-35355270

Shin-Etsu Silicones India Pvt. Ltd.

Unit No. 403A, Fourth Floor, Eros Corporate Tower, Nehru Place, New Delhi 110019, India Phone: +91-11-43623081 Fax: +91-11-43623084

Shin-Etsu Silicones (Thailand) Ltd.

7th Floor, Harindhorn Tower, 54 North Sathorn Road, Silom Bangrak, Bangkok 10500, Thailand Phone: +66-(0)2-632-2941 Fax: +66-(0)2-632-2945

- The data and information presented in this catalog may not be relied upon to represent standard values. Shin-Etsu reserves the right to change such data and information, in whole or in part, in this catalog, including product performance standards and specifications without notice.
- Users are solely responsible for making preliminary tests to determine the suitability of products for their intended use. Statements concerning possible or suggested uses made herein may not be relied upon, or be construed, as a guaranty of no patent infringement.
- For detailed information regarding safety, please refer to the Safety Data Sheet (SDS).
- The silicone products described herein have been designed, manufactured and developed solely for general industrial use only: such silicone products are not designed for, intended for use as, or suitable for, medical, surgical or other particular purposes. Users have the sole responsibility and obligation to determine the suitability of the silicone products described herein for any application, to make preliminary tests, and to confirm the safety of such products for their use.

- Users must never use the silicone products described herein for the purpose of implantation into the human body and/or injection into humans.
- Users are solely responsible for exporting or importing the silicone products described herein, and complying with all applicable laws, regulations, and rules relating to the use of such products. Shin-Etsu recommends checking each pertinent country's laws, regulations, and rules in advance, when exporting or importing, and before using the products.
- Please contact Shin-Etsu before reproducing any part of this catalog. Copyright belongs to Shin-Etsu Chemical Co., Ltd.

The Development and Manufacture of Shin-Etsu Silicones are based on the following registered international quality and environmental management standards.

Naoetsu Plant Takefu Plant

Gunma Complex ISO 9001 ISO 14001 (JCQA-0004 JCQA-E-0002) ISO 9001 ISO 14001 (JCQA-0018 JCQA-E-0064) ISO 9001 ISO 14001 JQA-EM0298) (JQA-0479

"Shin-Etsu Silicone" is a registered trademark of Shin-Etsu Chemical Co., Ltd. https://www.shinetsusilicone-global.com/