New Products Guide -Silicones to Highly Functionalize Plastics-

Silicones to Highly Functionalize Resins

With a Variety of Product Lineups, Shin-Etsu Silicone Contributes to Highly Functionalize Your Products.

Modified Silicone Fluids which bind various reactive groups exhibit a variety of properties by reacting with organic resin.

Types of resins Thermoset resin Thermoset resin			Thermoplastic resi	n				
Reactive groups		Polyurethane	Ероху	Acrylic	Polyimide	Polyamide	Polycarbonate	Polyester
Amino groups								
Epoxy groups								
	Carbinol type							
Hydroxyl groups	Diol type							
	Polyether type							
	Phenol type							
Methacryl groups								
Carboxyl groups								
Mercapto groups								
Acidanhydride gro	oups							

By blending few amounts of Silicone Master Pellets with resin, it is easy to obtain a compound in which the silicone is evenly dispersed.

Parameter Product name	Resin	Silicone content %	MFRg / 10mins	MFR Test condition
X-22-2101	Homo Polypropylene	50	33	210°C / 2.16kg
X-22-2125H	Low density polyethylene	50	20	190°C / 2.16kg
X-22-2138B	Ethylene vinylacetate copolymer	40	5	190°C / 2.16kg
X-22-2102	Polyacetal	40	55	190°C / 2.16kg
X-22-2184-30	ABS	30	45	220°C / 2.16kg
				(Not specified values

Silicone Master Pellets

We can discuss the Silicone formulation with your preferred resin. Please do not hesitate to contact us.

Silicone Powders

Shin-Etsu has developed a unique line of silicone powders which fall into three categories: Hybrid Silicone Powder, Silicone Resin Powder and Silicone Rubber Powder.

Silicone Rubber Powder*

Molecular structure: Straight-cl	hain crosslinked polymer
KMP-597 by scanning with electron micro scope Model of	of silicone rubber powder
	Pressure
Features	
Heat resistance	+
Weatherability	++
Dispersibility into resins	±
With organic solvents	Swelling

*There are also aqueous dispersion of silicone rubber power.

Enhanced Properties

Stress Relaxation • Impact Resistance					
No additive	Silicone R Hybrid Silicone	Rubber & powder added			
Resin & Coating	00000				
Pressure • Impact	Press	sure •			
	Silicone rubber & Hybrid silicone				
Broken	powder absorb the pressure or impact and relax the stress.				
Hybrid powder		++			
Resin powder –					
Rubber powder		++			

General Properties

Parameter	Broduct nome	Shano	Average particle	Particle size			Rubber hardness	Refractive index	
Туре	Product name	Snape	size µm	size µm distribution µm True spec				Rubber part	Resin part
Hybrid silicone powder	KMP-600	Spherical powder	5	1-15	0.99	0.1	30	1.41	1.43
	KMP-601	Spherical powder	12	2-25	0.98	0.1	30	1.41	1.43
	KMP-602	Spherical powder	30	4-60	0.98	0.1	30	1.41	1.43
	KMP-605	Spherical powder	2	0.7-5	0.99	0.1	75	1.42	1.43
	X-52-7030	Spherical powder	0.8	0.2-2	1.01	0.1	75	1.42	1.43
	KMP-706	Spherical powder	2	1-4	1.3	1	-	-	1.43
Silicone resin	KMP-701	Spherical powder	3.5	1-6	1.3	1	-	-	1.43
powder	X-52-1621	Spherical powder	5	1-8	1.3	1	-	-	1.43
	X-52-854	Spherical powder	0.7	0.2-5	1.3	1	-	-	1.43
Silicone rubber	KMP-597	Spherical powder	5	1-10	0.97	0.1	30	1.41	-
	KMP-598	Spherical powder	13	2-30	0.97	0.1	30	1.41	-
	KM-9729*	Emmulsion	2	-	-	-	-	-	-
perior.	X-52-1133*	Emmulsion	5	-	-	-	-	-	-

*Aqueous dispersion of silicone rubber power. By drying spherical powders are obtained.

Product Data

(Not specified values)

(Not specified values)

Dispersibility

Dispersibility in liquid epoxy resin

•Silicone rubber powder *Applying a shearing force improves dispersibility of silicone rubber powders in resin.

Long-Chain Spacer Silane Coupling Agents

With maximum freedom of functional group, Long-Chain Spacer Silane Coupling Agents improve reactivity. It improves flexibility and impact resistance in hybrid of resin and inorganic filler. And, with increased compatibility, it is possible to improve transparency of reactant in resin and inorganic filler, and high load inorganic filler into resins.

Features

- Increased hydrophobicity (Lipophilicity)
- Increased flexibility

General Properties

Product name	Chemical name	Organic functional groups	Chemical structure
KBM-1083	7-Octenyltrimethoxysilane	Olefin	(Me0) ₃ Si
KBM-4803	8-Glycidoxyoctyltrimethoxysilane	Ероху	(Me0) ₃ Si
KBM-5803	8-Methacryloxyoctyltrimethoxysilane	Methacrylic	(Me0) ₃ Si
KBM-6803	N-2-(aminoethyl)-8-aminooctyltrimethoxysilane	Amine	(Me0) ₃ Si

Applications

Organic / Inorganic adhesion improver

Glass/Epoxy, coupling performance evaluation

Surface treatment of inorganic filler

Evaluation of inorganic filler dispersion

*Left : KBM-5803 Owing to the improved dispersibility, transparency is improved

Formulation

Silane treated silica 10wt% Multifunctional acrylic compounds 90wt%

Protected functional group silanes have protected organic reactive groups. With protected functional group silanes, creating 1 component materials, which were formerly 2 component materials, or simultaneously adding a reaction system is possible, but was difficult due to the reactivity of silanes. And protected functional group silanes exhibit highly improved storage stability.

General Properties

Product name	Chemical name	Chemical structure
	3-(Triethoxysilylthio)propyltrimethoxysilane	(CH ₃ 0) ₃ Si Si (OC ₂ H ₅) ₃
X-12-1056ES	Examples of reactions	
	$(CH_30)_3Si$ $S^{Si} (OC_2H_5)_3 \xrightarrow{H_20} (CH_30)_3Si$	SH+H0—Si (0C2H5)3
KBE-9103P	3-Triethoxysilyl-N-(1,3 dimethyl-butylidene) propylamine	$(C_2H_50)_3SiC_3H_6N=C < C_4H_9 \\ CH_3$
X-12-967C	3-(Trimethoxysilyl)propylsuccinic anhydride	(CH ₃ 0) ₃ SiC ₃ H ₆
		Ő

Silane Coupling Agents (Polymer Type)

Shin-Etsu Chemical developed 2 types of coupling agents (polymer type) containing a number of reactive organic groups.

- 1) Coupling Agents (Alkoxy Oligomer Type) which are partial hydrolysates of conventional coupling agent
- 2) Silane Coupling Agents (Multifunctional Group Type) with organic backbone

Coupling Agents (Alkoxy Oligomer Type)

Owing to 100% of active ingredients, Coupling Agents (Alkoxy Oligomer Type) with siloxane back bone reduce generation quantity of alcohol. By choice of organic groups, it can achieve hydrophilic treatment on surfaces of coating as paint additives, or adapt adhesion (rework property) as additives for adhesive.

Features

- Partial hydrolysis condensation of silane coupling agent
- Large numbers of reactive functional groups with resins
- Film formulation property
- Low volatility

Structural model of alkoxy oligomers

Silane Coupling Agents (Multifunctional Group Type)

Silane coupling agent with organic backbone contains a number of alkoxy groups and organic functional groups. Owing to a number of reaction points, the user can expect improved adhesion. It is useful for primer, since its primary component is low volatility and it has a film formulation property.

Features

- Hydrolyzable groups are trialkoxysilyl groups.
- Large numbers of reactive functional groups with resins
- Film formulation property
- Low volatility

Structural model of silane coupling agents (multifunctional group type)

Parameter Product name	Organic f	unctional ups	Alkoxy groups	Functional group equivalent(per Si(OR)3)	Features
X-12-972F	Amine	- NH ₂	EtO	5	15%EtOH sol. Water solubility
X-12-981S	Enorm		EtO	3	Water resistance
X-12-984S	Ероху		EtO	3	Hydrophilicity
X-12-1048	Acrudate	0		1	Curable by UV exposure
X-12-1050	Acrylate	-0-0	MeO	5	Curable by UV exposure
X-12-1154	Mercapto	— SH	MeO	3	Adhesion to metal
X-12-1159L	Isocyanate	-NCO	MeO	2	Adhesion to metal

Silicone Oligomers

Ionic Silicone Oligomer X-40-2450

X-40-2450 is a silicone oligomer created through the silicone modification of an ionic liquid. By introducing ionic groups into siloxane structure, X-40-2450 has silicone's unique properties including antistatic properties.

Features

When added in small amounts to resins, X-40-2450 migrates easily to the coating surface.

General properties

Product name Parameter	X-40-9310	X-40-2450	X-40-2750
Types of silicone	Silane	Siloxane	Siloxane
Appearance	Colorless to pale yellow transparent liquid	Colorless transparent liquid	Colorless transparent liquid
Non-volatile content %	99	55	99
Viscosity mm ² /s	160	2.5	750
Specific gravity	1.24	0.97	1.17
Solvent	None	MEK*1	None
Expected properties	Adhesion, dispersibility, antistatic property	Antistatic property, releasability	Antistatic property, releasability
Application examples	Adding and dispersing into resins	Adding into coating agents	Mixing with reisn, adding into coating agents
* Methylethylketone		(N	ot specified values

Test Result of Antistatic Properties Product name

Ionic groups Mechanism of Silicone Action

Structural Model

4 (n-dentr)s(CH3)(CF3SC2)2N •Mix ratio : Dipertaerythritol hexaacrylate / 2-Hydroxy-2-Methyl-1-Phenyl-Propane-1-one / Methyl ethyl ketone /X-40-2450 = 48.8 / 2.4 / 48.8 / 2.0 •Substrate : PET (Cosmo Shine A4300) made by TOYOBO CO., LTD. •Cure conditions : 600mJ/cm² under a nitrogen atmosphere •Circle kicklewase formal.

Migration to

Silicone Oligomers Containing Alicyclic Epoxy Groups

Silicone oligomers contain only epoxy groups as their reactive functional groups, and can be formulated to cure by way of an acid anhydride, photo-cationic or thermal-cationic curing system. Silicone oligomers cure by the same mechanisms as do epoxy resins, while offering excellent heat resistance and high Tg (glass-transition temperature) that are characteristic of siloxane bonds.

The cyclosiloxane-based oligomers exhibit low shrinkage during curing.

Features

With its cyclic siloxane structure, KR-470 exhibits almost no shrinkage during curing. Its molecular structure is specified, meaning that reactions are easy to control. Cures with light or heat with the addition of an acid generator, acid anhydride, or amine-type catalyst. Excellent compatibility owing to low molecular weight.

General Properties

Product name Parameter	KR-470	X-40-2678
One point	Low cure shrinkage	Difunctional (Improved crack resistance)
Numbers of Epoxy functional groups	4	2
Viscosity mPa /s	3,000	120
Epoxy equivalent g/mol	200	290
		(Not specified values)

Comparison data of cured material

Parameter	Product name	KR-470	Ероху	Alicyclic epoxy
Cure system		Acid anhydride curing	Acid anhyc	Iride curing
Hardness Shore D		87	85	88
Flexural modulus	MPa	2,590	2,940	3,020
Curing shrinkage areometry	%	2.1	-1.7	-5.3
Boiling water absorption ratio	%	0.46	0.28	0.56
Тд	°C	191	150	193
Coefficient of liner expantion	< Tg	9.7	7.7	6.9
(×10 ⁻⁵ /K)	> Tg	15.4	17.6	16.2
			(Not specified values)

Basic Structure of KR-470

Comparison Chart of Cured Materials

Silicone Resins & Oligomers

Silicone Oligomer Type Coatings

Silicone Oligomer Type Coating Agents contain alkoxysilyl groups and cure at ambient temperatures and humidities with the use of a curing agent. They form very hard, glossy coatings that are highly resistant to heat and light, owing to their 3D siloxane structures.

Cross linking $2 \equiv Si-OR + 2H_2O \rightarrow (2\equiv Si-OH + 2ROH) \rightarrow \equiv Si-O-Si\equiv + H_2O + 2ROH$ mechanism

Product & Catalyst line up

By using different types of silicone oligomers and curing agents, the user can obtain coatings that vary widely in their curing speed and hardness or flexibility.

Model of after Curing

Product line up

Methyl / Phenyl Type Features : Gloss, Excellent flexi

Broduct nome	Braduat nama Easturas		
Froduct name	reatures		X-40-2309A
KR-401N	Excellent curability, Gloss		D-25
X-40-9227	Imparts flexibility		D-20
1/D 540	KR-510 Forms high hardness coating KR-9218 Forms medium hardness coating		DX-175
KK-510			DX-9740
KR-9218			CAT-AC

Catalyst Line Up

oility	Product name	Туре	Addition amount wt%	Features
	D-220	Phosphoric acid	5-10	Very high activity
Gloss	X-40-2309A	Phosphoric acid	10-50	High activity, can accelerate curing.
	D-25	Titanium	0.5-3	Higher activity than D-20
	D-20	Titanium	2-5	Slow reactivity
ss coating	DX-175	Titanium	3-5	Solvent diluted type (Easy to use)
	DX-9740	Aluminum	0.5-5	Forms high hardness coating
ess coating	CAT-AC	Aluminum	0.5-10	Solvent diluted type (Easy to use)

Formulation Example and Film Properties

Parameter Product name	Catalyst (Additive amount) %	Film thickness µm	Tack free 25°C min	Pencil hardness	Flexural resistance / Impact resistance
KR-500	D-20(2)	25	40	Н	±
KR-500	D-20(4)	25	25	2H	±
KR-500	D-9740(5)	25	100	5H	-
X-40-9225	D-20(3)	30	60	Н	+
KR-500/ X-40-9250 (=80/20)	D-20(2)	80	75	F	+

Result : + = Excellent ± = Satisfactory - = Poor

*Substrate : Polished steel sheet, Cure conditions : 25°C / 70% RH×7days (Tack-free time varies depending on temperature and humidity)

Ultra High Molecular Weight Silicone Resin KR-251

KR-251 is a methyl silicone resin with a very high molecular weight. With KR-251, the molecular weight has been increased as much as possible without causing gelation.

Features

- Common methyl silicone resins
- Verv hard film
- · Easy to crack
- · Heat cure is necessary

KR-251

- The coating film is hard to crack.
- Form the coating film by air drying • Form the harder coating film by heating

General property

Product na Product na Parameter	KR-251	
Appearance		Colorless transparent liquid
Non-volatile content 105°C × 3h	%	20
Viscosity 25°C	mm²/s	18
Specific gravity 25°C		0.92
Acid value		< 2
Solvent		Toluene
		(Net excelled using

Film properties						
Clear coating						
Curing condition	25°C×1day	150°C×30min 8µm				
Film thickness	8µm					
Pencil hardness	HB	F				
Substrate : Polishe	(Not specified values)					

Model of Coating Structure

(Not specified values)

Spherical Silica Fine Particles

With very small average particle size, narrow distribution and its hydrophobized surface, Spherical Silica Fine Particles have a superior flowability, dispersion, water repellency and lubricity.

Features

- •Narrow particle size distribution, monodisperse and no aggregation.
- •Fine adhesion to various powders and it improves the flowabilitiy

• QSG-100

 Adherence of QSG-100 to polystyrene particles

General Properties

Product name Parameter	QSG-170	QSG-100	QSG-90	QSG-80	QSG-30	QSG-10		
Appearance	White powder							
Shape	Spherica							
Average particle size* nm	170	110	90	80	30	15		
Bulk density g/cm ³	0.44	0.44	0.44	0.44	0.22	0.22		
True specific gravity	1.8	1.8	1.8	1.8	1.8	1.8		
Specific surface area m ² /g	16	25	30	40	150	160		
Hydrophobicity, Methanol wettability %	67	67	67	67	67	72		
Production method	Sol-Gel							

*The average particle size by dynamic light scattering (Laser Doppler)

Adhesion State with Various Powders QSG-100

Metal silicons

Surface of Nylons

(Not specified values)

(Not specified values)

Polyester particles

Particle size (µm)

Silicone Division

Marunouchi Eiraku Bldg., 4-1, Marunouchi 1-chome, Chiyoda-ku, Tokyo 100-0005, Japan

Sales and Marketing Department I Phone : +81-(0)3-6812-2406 Fax : +81-(0)3-6812-2414 < Modified Silicone Fluids, Silicone Master Pellets, Silicone Powders, Spherial Silica Fine Particles >

Sales and Marketing Department II Phone : +81-(0)3-6812-2407 Fax : +81-(0)3-6812-2414 < Silicone Resins, Silicone Oligomers, Alkoxysilanes, Silane Coupling Agents >

Shin-Etsu Silicones of America, Inc.

1150 Damar Drive, Akron, OH 44305, U.S.A. Phone : +1-330-630-9860 Fax : +1-330-630-9855

Shin-Etsu do Brasil Representação de Produtos Químicos Ltda.

Rua Coronel Oscar Porto, 736 - 8°Andar - Sala 84, Paraíso São Paulo - SP Brasil CEP: 04003-003 Phone : +55-11-3939-0690 Fax : +55-11-3052-3904

Shin-Etsu Silicones Europe B.V.

Bolderweg 32, 1332 AV, Almere, The Netherlands Phone : +31-(0)36-5493170 Fax : +31-(0)36-5326459 (Products & Services: Products for Cosmetics Application)

Germany Branch

Kasteler Str. 45, 65203 Wiesbaden, Germany Phone : +49-(0)611-71187290 (Products & Services: Products for Industrial Applications)

Shin-Etsu Silicone Korea Co., Ltd.

GT Tower 15F, 411, Seocho-daero, Seocho-gu, Seoul 06615, Korea Phone : +82-(0)2-590-2500 Fax : +82-(0)2-590-2501

Shin-Etsu Silicone International Trading (Shanghai) Co., Ltd.

29F Junyao International Plaza, No.789, Zhao Jia Bang Road, Shanghai 200032, China Phone : +86-(0)21-6443-5550 Fax : +86-(0)21-6443-5868

Guangzhou Branch

Room 2409-2410, Tower B, China Shine Plaza, 9 Linhexi Road, Tianhe, Guangzhou, Guangdong 510610, China Phone : +86-(0)20-3831-0212 Fax : +86-(0)20-3831-0207

- The data and information presented in this catalog may not be relied upon to represent standard values. Shin-Etsu reserves the right to change such data and information, in whole or in part, in this catalog, including product performance standards and specifications without notice.
- Users are solely responsible for making preliminary tests to determine the suitability of products for their intended use.
 Statements concerning possible or suggested uses made herein may not be relied upon, or be construed, as a guaranty of no patent infringement.
- For detailed information regarding safety, please refer to the Safety Data Sheet (SDS).
- The silicone products described herein have been designed, manufactured and developed solely for general industrial use only; such silicone products are not designed for, intended for use as, or suitable for, medical, surgical or other particular purposes. Users have the sole responsibility and obligation to determine the suitability of the silicone products described herein for any application, to make preliminary tests, and to confirm the safety of such products for their use.

Shin-Etsu Silicone Taiwan Co., Ltd.

Hung Kuo Bldg. 11F-D, No. 167, Tun Hua N. Rd., Taipei, 105406 Taiwan, R.O.C. Phone : +886-(0)2-2715-0055 Fax : +886-(0)2-2715-0066

Shin-Etsu Singapore Pte. Ltd.

1 Kim Seng Promenade #15-05/06 Great World City, Singapore 237994 Phone : +65-6743-7277 Fax : +65-6743-7477

Shin-Etsu Silicones Vietnam Co., Ltd.

Unit 4, 11th Floor, A&B Tower, 76A Le Lai Street, Ben Thanh Ward, District 1, Ho Chi Minh City, Vietnam Phone : +84-(0)28-35355270

Shin-Etsu Silicones India Pvt. Ltd.

Unit No. 403A, Fourth Floor, Eros Corporate Tower, Nehru Place, New Delhi 110019, India Phone : +91-11-43623081 Fax : +91-11-43623084

Shin-Etsu Silicones (Thailand) Ltd.

7th Floor, Harindhorn Tower, 54 North Sathorn Road, Silom Bangrak, Bangkok 10500, Thailand Phone : +66-(0)2-632-2941 Fax : +66-(0)2-632-2945

- Users must never use the silicone products described herein for the purpose of implantation into the human body and/or injection into humans.
- Users are solely responsible for exporting or importing the silicone products described herein, and complying with all applicable laws, regulations, and rules relating to the use of such products. Shin-Etsu recommends checking each pertinent country's laws, regulations, and rules in advance, when exporting or importing, and before using the products.
- Please contact Shin-Etsu before reproducing any part of this catalog. Copyright belongs to Shin-Etsu Chemical Co., Ltd.

(
(The Development and Manufacture of Shin-Etsu Silicones are based on the following registered international quality and environmental management standards.				
	CM003	Gunma Complex	ISO 9001 (JCQA-0004	ISO 14001 JCQA-E-0002)		
	B AL	Naoetsu Plant	ISO 9001 (JCQA-0018	ISO 14001 JCQA-E-0064)		
	MS CM009	Takefu Plant	ISO 9001 (JQA-0479	ISO 14001 JQA-EM0298)		

"Shin-Etsu Silicone" is a registered trademark of Shin-Etsu Chemical Co., Ltd. https://www.shinetsusilicone-global.com/