Silicone Resins & Oligomers

Adding Functionality, improving Durability and Reliability

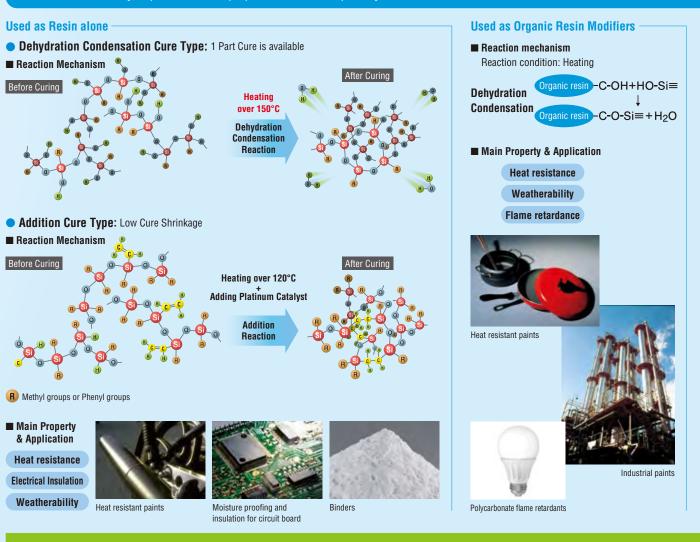
Silicone Resins

& Silicone Oligomers

CONTENTS

What are Silicone Resins and Silicone Oligomers? $\cdots\cdots\cdots$ P3
Silicone Resins ······P4-12
Structures of Silicone Resins ····· P4
Types of Silicone Resins ····· P4
EFeatures of Silicone Resins ····· P4
Cure Systems of Silicone Resins ······ P5
Relationship between Compositions and
Characteristics of Silicone Resins ······P5
Product List ····· P6
Product Lineup ····· P7
■ Map of Structures and Features ······ P7
Applications ······P8-10
Heat Resistant Paints ····· P8
• Weather Resistant Paints •••••• P9
• Resin Modifiers •••••• P9
Electrical Insulation Coatings ······P10
Heat Resistant & Electrical Insulation Binders ······ P10
A Main Products ······ P11-12

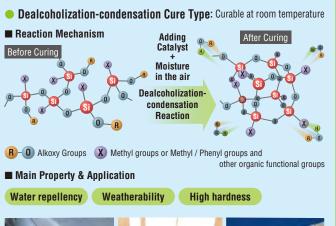
Silicone Oligomers P13-19
Systems and Structures of Silicone Oligomers ······· P13
Features of Silicone Oligomers ······ P13
Types of Silicone Oligomers ······P13
Туре А
Product List ····· P14
Applications ······ P14-15
Organic Resin Modifiers Room Temperature Moisture Cure Coatings
Туре АВ
Product List ······ P16
Applications ······P16
Coupling Agents
Туре R
P17
Main Products ······ P18-19
Product Features & Packaging Options ······P20-21
Catalysts ······ P22


Handling Precautions ······P23

What are **Silicone Resins?**

On a molecular level, silicone resins are primarily made up of siloxane units (Si-O-Si) which have a high bond energy. Silicone resin coatings have many useful properties including heat resistance, excellent weatherability, superior dielectric properties and water repellency.

Structures of Silicone Resins Solidify is possible

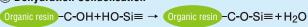

Siloxane Structure: 3D Network structure Molecular Weight: Medium to High Functional Groups: <Reactive> Silanol Groups (Si-OH), Vinyl Groups (Si-CH=CH₂), Hydrosilyl Groups (Si-H) <Non-reactive> Methyl Groups, Phenyl Groups

What are Silicone Oligomers?

Silicone oligomers are relatively low-molecular-weight silicone resins. These unique products can be used as resins on their own, they can be used to improve the properties of organic resins, or as modifiers to improve interfacial compatibility.

Used as resins on their own

And me


Structures of Silicone Oligomers Solventless (Silicone content 100%)

Siloxane Structure: 3D Network structur

Inctional Groups: A los and the second secon

Used as Organic Resin Modifiers ■ Reaction Mechanism Reaction condition: Room temperature or heating (catalyst should be used together) ① Dealcoholization-condensation Organic resin -C-OH+RO-Si≡ → Organic resin -C-O-Si≡+R-OH

② Dehydration Condensation

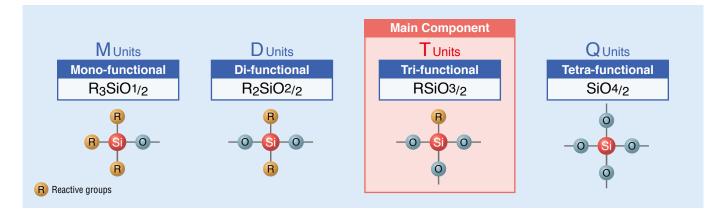
③ Chemical Reaction of Acrylic or Epoxy Groups

Adhesives

Main Property & Application

Adhesion Weatherability

Body coatings


Floor coatings

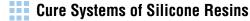
Water repellent agents

Substrate & Encapsulants

Structures of Silicone Resins

All silicone products are composed of the four units shown below. Silicone resins are composed mainly of T units, and cure to form hard coatings with a 3D network molecular structure. Resins having D units (Di-functional) form flexible films, while those with Q units (Quadri-functional) will form films with higher hardness.

Model of Curing Silicone Resins

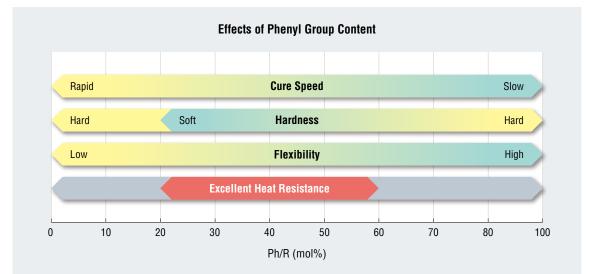


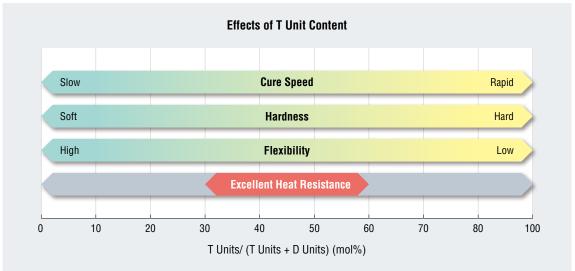
Features of Silicone Resins

With their molecular backbone of siloxane units, silicone resins outperform organic resins in heat resistance, weatherability and dielectric properties. Some of their special features are described below.

■ Comparison of Silicone Resins and Organic Resins

Features	Silic	one Resins [Structure:=Si-O-Si=]	Organi	c Resins [Structure:=C-C=,=C-O-C=]
Heat resistance	Excellent	≤ 250°C	Excellent	≤ 200°C
Electrical properties	Excellent	Consistent across a wide range of temperatures	Poor	Decline in hot, humid conditions
Water resistance	Excellent	Low hygroscopicity (Due to the orientation of their $=$ Si-CH ₃)	Poor	High hygroscopicity (Absorbed water does not dissipate easily)
Weatherability	Excellent	Excellent ultraviolet resistance	Poor	
Flame retardancy	Excellent		Poor	Must be used with a fire retardant
Adhesiveness	Excellent	Particularly to inorganic materials	Excellent	Particularly to organic materials
Mechanical strength	Poor	Intermolecular force: Small	Excellent	Intermolecular force: Strong / Crystallinity: Strong
Chemical resistance	Poor	Vulnerable to strong acids and bases	Excellent	



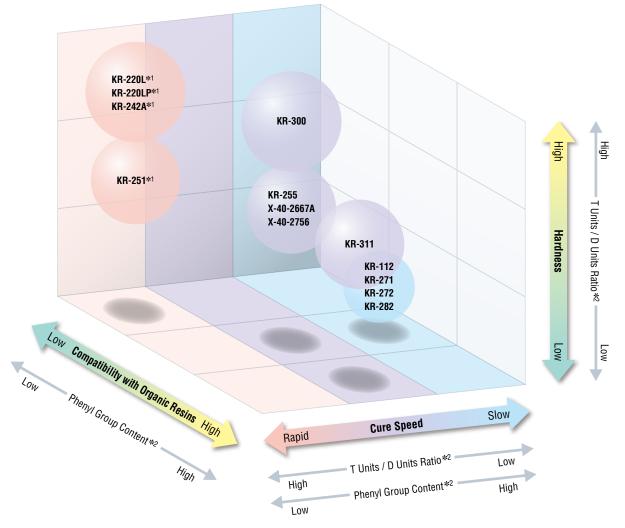

Silicone resins generally rely on one of two cure systems: dehydration-condensation and hydrosilylation. The majority cure by dehydration-condensation. The cure conditions and advantages of each cure systems are described below.

Cure	Systems	Cure Conditions	Features
Condensation reaction	Dehydration condensation	 Structure Containing silanol groups Catalysts Not necessary (But can be used to accelerate the reaction) Heating Necessary (Methyl type: 100°C to 200°C, Phenyl type: 180°C to 250°C) 	One Componet Cure
Addition reaction	Hydrosilylation	 Structure Containing –Si–CH=CH2 and H–Si– Catalysts Necessary (Platinum based catalysts) Heating Necessary (100°C to 150°C) 	 Rapid Cure Low Cure Shrinkage

Relationship between Compositions and **Characteristics of Silicone Resins**

With silicone resins, the cure speed, film hardness, heat resistance and other properties can vary greatly depending on the resin's molecular weight, the types of organic substituents and functional groups it contains. The charts below show the relationship between a silicone resin's characteristics and its compositions, specifically the phenyl group content and ratio of T units to D units.

Product List


Product name	Туре	Non-volatile content 105°C×3 h %	Solvent	Cure speed	Hardness	Compatibility with organic resins	Main applications	Features
KR-220L		100* ¹	None	Rapid	High	Low	Heat resistant and flame retardant binders	White flake, excellent heat resistance and flame retardance, very little smoking by heatig
KR-220LP	Methyl Type	100*1	None	Rapid	High	Low	Heat resistant and flame retardant binders	Powder type of KR-220L
KR-242A		50	Toluene, isopropyl alcohol	Rapid	High	Low	Heat resistant and flame retardant binders	Excellent heat resistance and flame retardance
KR-251		20	Toluene	Rapid	Medium	Low	Moisture proofing and insulating coatings	Thin hard coating
KR-112		70	Toluene, xylene	Slow	Low	Medium	Moisture proofing and insulating coatings	Solvent resistant flexible coating
KR-211		70	Xylene	_	_	_	Resin modification	Excellent compatibility
KR-212		70	Xylene	_	_	_	Resin modification	Excellent compatibility, more flexible than KR-211
KR-255		50	Toluene, xylene	Medium	Medium	Medium	Moisture proofing and insulating coatings	Glossy hard coating
KR-271		50	Xylene	Slow	Low	Medium	Heat resistant paints	Excellent heat resistance and flexibility
KR-272	Methyl/Phenyl	50	Xylene	Slow	Low	Medium	Heat resistant paints	Excellent heat resistance
KR-282	Туре	50	Xylene	Slow	Low	Medium	Heat resistant paints	Excellent flexibility and anti-cracking properties
KR-300		50	Xylene	Medium	High	Medium	Heat resistant paints	Excellent heat resistance high hardness coating
KR-311		60	Xylene	Medium	Medium	High	Heat resistant paints	Excellent heat resistance and compatibility with organic resins
X-40-2667A		100* ¹	None	Medium	Medium	Medium	Molding	Solventless, addition cure type, excellent curability and low shrinkage
X-40-2756		100* ¹	None	Medium	Medium	Medium	Molding	Solventless, addition cure type, 1 part, high Tg
KR-480		100* ¹	None	_	_	_	Resin modification	White flake, high phenyl content, excellent compatibility
KR-216	Propyl / Phenyl Type	100* ¹	None	_	_	_	Resin modification	Solid shape, solventless, excellent compatibility
ES-1001N		45	Xylene, diacetone alcohol, n-butanol	_	_	_	Heat resistant paints	Excellent anti-corrosion property, heat resistance and weatherability
ES-1002T	Modified Epoxy Resins	60	Toluene	_	_	_	Heat resistant paints	Excellent anti-corrosion property and chemical resistance
ES-1023		45	Xylene, diacetone alcohol	_	_	_	Heat resistant paints	Excellent anti-corrosion property
KR-5206	Modified Alkyd Resins	50	Xylene	_	_	—	Heat resistant paints	Excellent flexibility and adhesion
KR-5230		60	PGMAC*2	_	_	—	Heat resistant paints	Excellent flexural resistance, heat resistance and weatherability
KR-5234	Modified Polyester Resins	60	PGMAC*2 (23%) MMBAC*3 (13%) isopropyl alcohol (4%)	_	_	_	Heat resistant paints	Retains glossy appearance under high temperature
KR-5235	Resins 60		PGMAC*2 (20%) MMBAC*3 (10%) isobutyl alcohol (10%)	_	_	_	Heat resistant paints	Excellent releasability and non-stick property
KR-114B	Rubber Type	50	Ligroin	_	_	_	Moisture proofing and insulating coatings	Wax-like soft coating, Finished coating can be removed easily with solvents

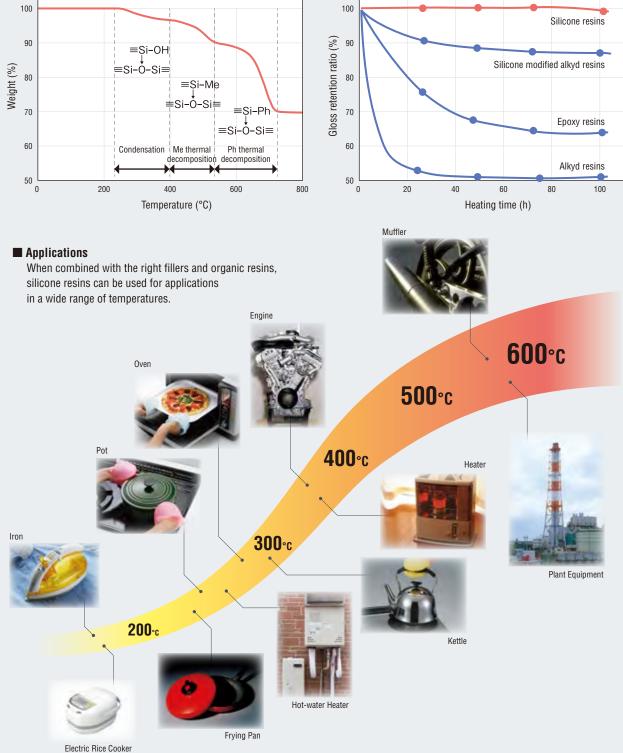
*1 Active ingredient *2 Propyleneglycol monomethylether acetate *3 3-Methyl-3-methoxybutyl acetate

(Not specified values)

Product Lineup		
Methyl Silicone Resins	Methyl silicone resins are a type of silicone resin in which the organic substituent groups consist entirely of methyl groups. These resins form very hard films with excellent moistureproofing properties, dielectric properties, water repellency, and release properties.	Methyl Type • KR-220L • KR-220LP • KR-242A • KR-251 Methyl/Phenyl Type KR-112 • KR-282
Methyl / Phenyl Silicone Resins	In methyl phenyl silicone resins, the organic substituent groups consist of methyl groups and phenyl groups. These resins form coatings with excellent heat resistance, mechanical strength, and glossiness.	
Organic resin-modified Silicone Resins	Organic resin-modified silicone resins are silicone resins that have been hybridized with other organic resins. They form coatings with the advantages of organic resins (such as mechanical strength and chemical resistance), plus the features associated with silicone resins.	Modified Epoxy Resins • ES-1001N • ES-1002T • ES-1023

Map of Structures and Features

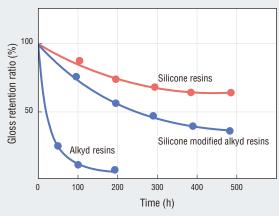
*1 Methyl silicone resin, contains no phenyl groups.
 *2 T Units / D Units Ratio and phenyl content are key factors determining hardness, cure speed and compatibility with organic resins, but not all products fit this pattern.


Applications

Heat Resistant Paints

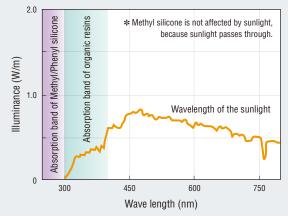
With their **excellent heat resistance**, silicone resins are commonly used as **paint vehicles** for high temperature applications (200°C and higher) that are too hot for regular organic resin-based paints. They show good compatibility with common inorganic pigments, and owing to their excellent weatherability and moisture resistance, silicone resins can stand up to the punishment of outdoor exposure. Heat resistant paints come in a variety of product types and compositions depending on the intended application, substrate material and usage temperatures. Many heat resistant paints, are in fact made using silicone resins.

Weight Loss Data under High Temperature (Methyl/Phenyl Type) (in air)



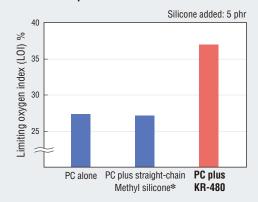
8

Weather Resistant Paints


Traditional exterior coatings can deteriorate through exposure to UV rays, heat and water, all resulting in a loss of luster and/or chalking. However silicone resins are not broken down by UV rays, heat or water. They have much better weatherability than regular organic resins and are commonly used as vehicles for exterior paints.

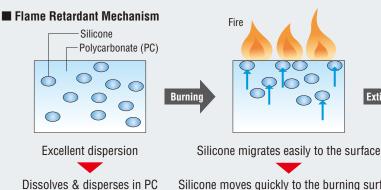
Changes of Weather Resistance Comparison Data with Organic Resins

The graph above shows the gloss retention as tested by weatherometer. With an organic resin (alkyd), the drop is dramatic. But the silicone resin and silicone-modified alkyd resin retain much of their original luster.

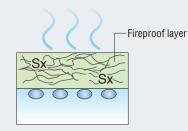

Much of the sunlight reaching the earth's surface is at wavelengths of 300 nm and higher. Most organic resins are susceptible to damage by light in this area of the spectrum. In contrast, Methyl silicone resins absorb almost no light in the UV spectrum, while Methyl/Phenyl silicone resins absorb only light in the spectrum below 280 nm, which means that sunlight has almost no effect.

Resin Modifiers

Silicone resins with a high phenyl content have excellent compatibility with organic resins and can be used to imbue them with the many features of silicones.


For example, KR-480 can be added to polycarbonate during compounding to improve flame resistance. This and other silicone resins are attracting attention as a safer, more eco-friendly alternatives to conventional antimony, halogen or phosphate based fire retardants.

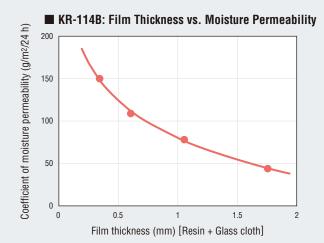
Flame Retardancy of Polycarbonate when Compounded with KR-480

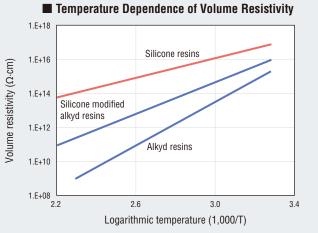


* Weight-average molecular weight of silicone: around 60,000 (Data on PC resin provided by NEC Corp.)

Extinction

Silicone moves quickly to the burning surface

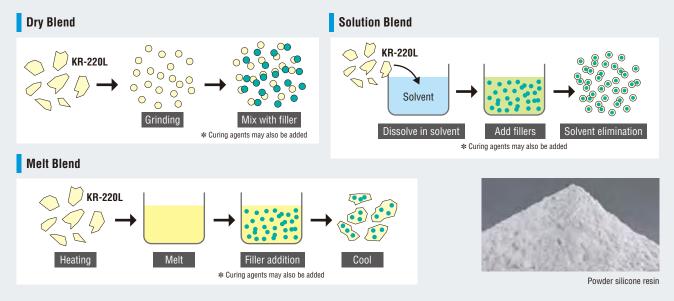



Interaction between PC and phenyl groups in the silicone

Flame-retardant layer forms

Electrical Insulation Coating

Silicone resins retain high volume resistivity (over 1×10¹³Ω·cm) over a wide temperature range (room temp. to 200°C), and their dielectric properties show little dependence on temperature. In addition, they absorb very little moisture due to the orientation of the methyl groups at the surface of the coating. Features like these are why silicone resins are so often used to protect electronic components.


Electrical Properties of Films

Parameter	Product name	KR-251	KR-255	KR-114B	KR-112
Volume resistivity*1	Initial	2.1×10 ¹⁵	2.9×10 ¹⁵	2.7×10 ¹⁵	2.9×10 ¹⁵
Ω·cm	Moisture absorption*2	4.4×10 ¹²	3.5×10 ¹²	2.1×10 ¹³	5.3×10 ¹³
	50 Hz	3.07	3.06	3.30	3.05
Relative permittivity*1	1,000 Hz	3.06	3.05	3.29	3.15
pormitivity	100,000 Hz	3.05	3.03	3.28	3.17
	50 Hz	0.0010	0.0025	0.0035	0.0027
Dielectric dissipation factor*1	1,000 Hz	0.0010	0.0023	0.0032	0.0024
	100,000 Hz	0.0016	0.0023	0.0031	0.0021
*1 Film thickness: 100 μ		(Not specified values			

*2 Moisture absorption: measured after being left for 4 days at 85°C/85% RH

Heat Resistant & **Electrical Insulation Binders**

With their excellent heat resistance and dielectric properties, and because they do not soften when heated, silicone resins are used as binders for molding with powdered metals and other materials. And with the increasing popularity of hybrid and electric vehicles and photovoltaics, demand for silicone resins to be used as binders for coil molding are on the rise.

Main Products

KR-220L, KR-220LP Solid Silicone Resins

KR-220L and KR-220LP are solid silicone resins that undergo rapid crosslinking when heated.

They are used as binders for inorganic materials, and can be used in molding to produce items with

outstanding heat resistance, flame retardance and solvent resistance.

Since solid silicone resins come in **solid form**, the choice of solvent is up to the user.

KR-220L and KR-220LP will dissolve in toluene, xylene, isopropyl alcohol and other solvents.

\langle Application Examples \rangle

General Properties

 Binders for mica laminated plate
(Support structure for nichrome wire for irons, hair dryers and toasters;
heat resistant washers, electrical insulation for high temperature instruments,
thermal insulation boards, partition boards for microwave ovens)

- Flame retardant paints
- Binders for electrical & electronic components
- Paints for resistors
- Powder coatings

Product na Parameter	ame	KR-220L	KR-220LP
Appearance		White flake	White powder
OH content w	vt%	3	3
Softening point	°C	67	67
Gelation time 200°C	S	240	240
			an 1 1 1 1

(Not specified values)

KR-480 Solid Silicone Resin for Organic Resin Modification

KR-480 is a solid silicone resin designed for the modification of organic resins. It has especially **excellent compatibility with polycarbonate resin (PC)**,

and can be added to PC to improve flame retardance without sacrificing moldability, impact resistance or moisture resistance.

< Application Examples >

- Flame retarder for polycarbonate (PC)
- Stress relaxation for epoxy resin

General Properties

Prod Parameter	luct name	KR-480
Appearance		White flake
Softening point	°C	90
Active ingredient	%	100

(Not specified values)

Properties of Polycarbonate Resin (PC) when Compounded with KR-480

Parameter		PC alone	PC with brominated flame retardant	PC with KR-480
Flexural strength	kgf/cm ²	960	970	930
Flexural modulus	kgf/mm ²	230	230	220
Impact strength	kgf∙cm/cm	97	45	80
Heat deflection temperature	°C	138	137	134
Rockwell hardness		63	66	60
Melt flow	g/min	10.4	10.7	11.8
Flame retardance UL94*1		V-2	V-0	V-0

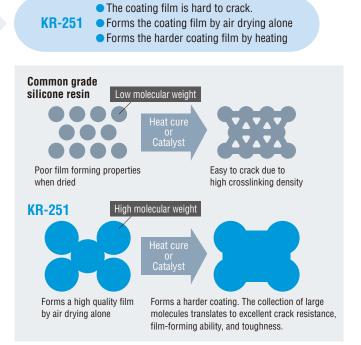
*1 Test piece thickness: 1.57 mm

(Not specified values)

Main Products

KR-251 Ultra High Molecular Weight Silicone Resin

KR-251 is a methyl silicone resin with a very high molecular weight.

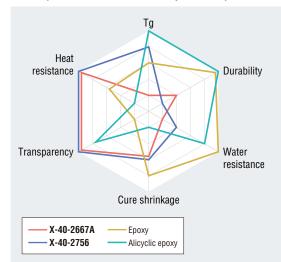

	 Very hard film
Common methyl silicone resins	 Easy to crack
	 Heat cure is necessary

General Properties

Parameter Product name	KR-251
Appearance	Colorless transparent liquid
Non-volatile content 105°C x 3 h %	20
Viscosity at 25°C mm ² /s	18
Specific gravity at 25°C	0.92
Acid value	< 2
Solvent	Toluene
	(Not specified values)

Film Properties

Clear coating					
Curing condition	25°C x 1 day	150°C x 30 min			
Film thickness µm	8	8			
Pencil hardness	HB	F			
Substrate: Polished steel sheet (Not specified values)					


X-40-2667A, X-40-2756 Silicone Resins for Mold making

It is a line of silicone resins for mold making. X-40-2667A and X-40-2756 exhibit excellent heat resistance and have 100 %silicone content. X-40-2756 is easy to handle owing to the 1 part curability and higher Tg.

X-40-2667A (2 part addition cure silicone resin)

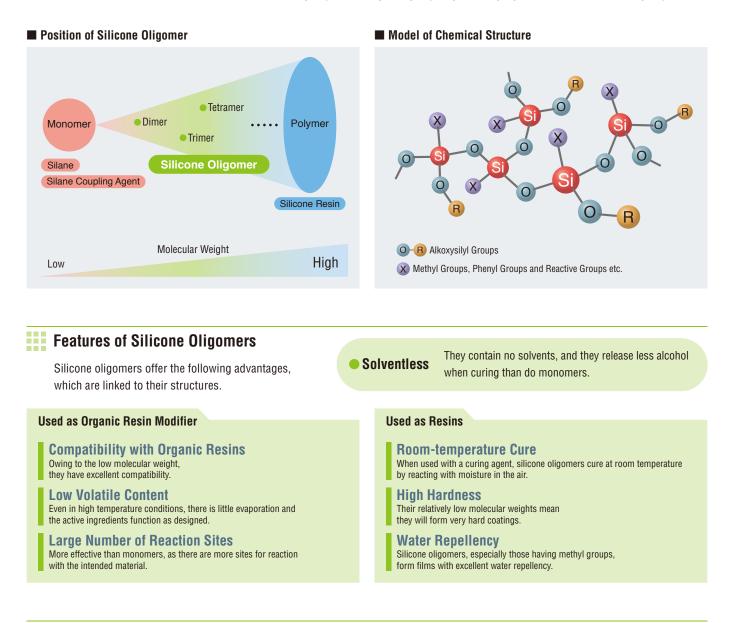
- Excellent heat resistance
- X-40-2756 (1 part addition cure silicone resin)
- Excellent heat resistance and low-water absorption

Comparison Chart of Cured Physical Properties

Properties of Molding

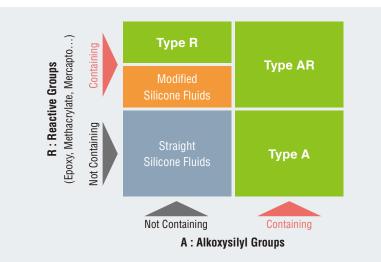
Parar	Product name meter	X-40-2667A	X-40-2756	Ероху	Alicyclic epoxy
Cure	e system	Additio	on cure	Acid anhydride cure	
	ndard ng conditions	105°C x 2 h + 170°C x 2 h	200°C x 16 h (Tack-free time 1 h)	105°C x 2 h +	- 170°C x 2 h
Hard	Iness Shore D	70	67	85	88
Flexu	ral modulus MPa	1,110	707	2,940	3,020
Tg	°C	48	150	150	193
Volu after	ıme change _% r cure	-3.3	-3.1	-1.7	-5.3
Boili	ing water absor	ption			
	Before boiling	Transparent	Transparent	Pale yellow	Transparent
се	-	Whitening	Whitening (Transparent after 24 h)	No change	No change
Appearance	After boiling	\bigcirc	()	(internet	
Water	absorption ratio %	0.34	0.16	0.28	0.56

Molding examples



Sheet (Thickness: 0.2 mm)

Systems and Structures of Silicone Oligomers


Silicone oligomers is a term used for silicone resins with relatively low molecular weights and whose molecules have a **3D network structure**. They generally consist of dimers and trimers and have **molecular weights up to around 1,000**. Their molecules can be functionalized with a variety of functional groups including methyls, phenyls, alkoxysilyls and reactive functional groups.

Types of Silicone Oligomers

Silicone oligomers can be categorized into three major groups, depending on whether or not they contain **alkoxysilyl** groups and reactive groups. Each type has different functions, and can be used for different purposes and applications.

Classification of Silicone Oligomers

Type A Alkoxysilyl Groups: Containing / Reactive Groups: Not Containing

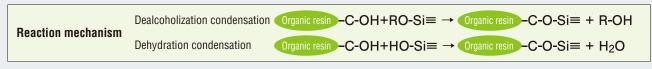
Type A products contain alkoxysilyl groups, but no reactive groups. They may have methyls alone, or have both methyls and phenyls. Their structure is comparable to that of a silicone resin.

Methyl Type

Methyl silicone oligomers hydrolyze easily, and can be used as room-temperature/moisture-cure coating agents when used with the proper curing agent. They will form very hard coatings with excellent water repellency.

Methyl/Phenyl Type

These products have excellent compatibility with organic resins, so they can be used with organic resins as modifiers or as reactive diluents. They can also impart flexibility to coating which is curable due to the reaction with moisture under room temperature. And the coating is made up of methyl oligomers and catalyst.


Product List

Parameter Product name	Reactive groups	Alkoxy group	Viscosity at 25°C mm²/s	Refractive index at 25°C	Alkoxy group content wt%	Features
KC-89S	Methyl	Methoxy	5	1.394	45	Low DP (degree of polymerization)
KR-515	Methyl	Methoxy	7	1.397	40	Medium DP
KR-500	Methyl	Methoxy	25	1.403	28	Medium DP
X-40-9225	Methyl	Methoxy	100	1.407	24	High DP
X-40-9246	Methyl	Methoxy	80	1.407	12	Improves flexibility
X-40-9250	Methyl	Methoxy	80	1.407	25	Improves flexibility, thick coatings
KR-401N	Methyl/Phenyl	Methoxy	20	1.432	33	Low phenyl content
X-40-9227	Methyl/Phenyl	Methoxy	15	1.460	15	Improves flexibility
KR-510	Methyl/Phenyl	Methoxy	100	1.509	17	Forms high hardness coatings
KR-9218	Methyl/Phenyl	Methoxy	40	1.529	15	Forms medium hardness coatings
KR-213	Methyl/Phenyl	Methoxy	16	1.525	20	High phenyl content
						(Not specified values

Applications

• Organic Resin Modifiers Type A silicone oligomers contain alkoxysilyls, which are useful in and of themselves, or which can be hydrolyzed to form silanols. These oligomers can be used to modify organic resins to improve

their heat resistance and weatherability. Alcoholic hydroxyl groups in the organic resin react with alkoxysilyls to release alcohol (dealcoholization condensation), or with silanols to release water (dehydration condensation). Typically, methyl oligomers are used with water-based organic resins, and phenyl oligomers are used with solvent-based organic resins.

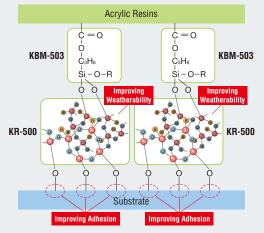
Advantages of Silicone-modified Organic Resins

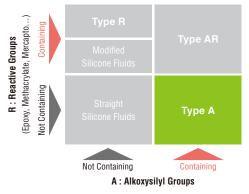
Acrylic Resins

Through silicone modification, we get the excellent solvent resistance, chemical resistance and durability of acrylic resins plus the weatherability and heat resistance of silicone. Modified acrylic resins are commonly used in paints for construction materials.

Polyester Resins

Through silicone modification, we get the excellent flexural resistance of polyester resins plus the weatherability and heat resistance of silicone. Modified polyester resins are used to produce paints for construction materials, industrial uses, paints for home appliances that operate at high temperatures.


Epoxy Resins

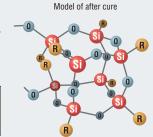

Through silicone modification, we get the excellent corrosion resistance of epoxy resins plus the weatherability and heat resistance of silicone. Modified epoxy resins are used in paints that provide protection against acids and other substances with strong staining potential.

Alkyd Resins

Silicone modification improves the weatherability of alkyd resins. Modified alkyd resins cure at room temperature and are used in paints for storage tanks, ships, bridges and other things that are exposed to the elements.

Model of Resin Modification

Room Temperature Moisture Cure Coatings


2 Part Type

When used with a curing agent, Type A oligomers can be used as **Room-temperature/Moisture-cure coating agents**. They are used as auto body coatings, floor coatings, and in a wide array of other applications.

Cross linking system 2 ≡Si-OR + 2H₂O → (2 ≡Si-OH + 2ROH) → ≡Si-O-Si≡ + H₂O + 2ROH

By using different combinations of oligomers and curing agents, the user has considerable control over the cure speed as well as the hardness, flexibility and thickness of the cured coating. With the choices available, the user can find the right formula for specific purposes and applications.

Coating Properties Obtained with Different Combinations of Products and Curing Agents

Parameter Product name	Catalyst (Additive amount) %	Film thickness µm	Tack-free at 25°C min	Pencil hardness	Flexural strength/ Impact resistance
KR-500	D-20 (2)	25	40	Н	±
KR-500	D-20 (4)	25	25	2H	±to-
KR-500	DX-9740 (5)	25	100	5H	-
X-40-9225	D-20 (3)	30	60	Н	+
KR-500/X-40-9250 (=80/20)	D-20 (2)	80	75	F	+

+: Excellent ±: Satisfactory -: Poor

* Substrate: polished steel sheet, Cure conditions: 25°C/70%RH × 7 days (Tack-free time varies depending on temperature and humidity)

(Not specified values)

1 Part Type (Pre-blended) -

We offer a range of Type A products which come pre-blended with the optimal curing agents.

With these products, no mixing of curing agents is involved. They can be applied to metal, stone, wood and plastic,

where they will cure to form coatings with excellent weatherability and water repellency.

KR-400 is a special high hardness formula, X-40-2327 is rapid curing,

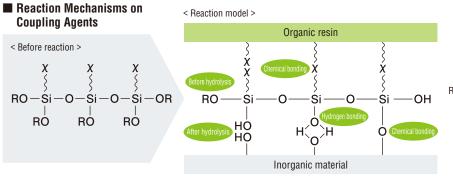
and KR-401 offers excellent flexural strength and impact resistance.

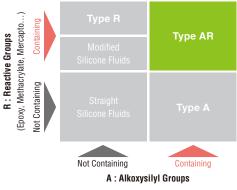
Product List

Parameter Product name		Viscosity at 25°C mm²/s	Refractive index at 25°C	Tack-free at 25°C min	Pencil hardness / <u>curing days</u>	Features
KR-400	Methyl	1.2	1.390	30 to 60	5H/ <u>2</u> →8H/ <u>7</u>	Forms high hardness coatings
X-40-2327	Methyl	0.9	1.382	5 to 10	5H/ <u>1</u>	Rapid cure, Finished coating can be recoated.
KR-401	Methyl/Phenyl	20	1.435	30 to 60	3H/ <u>7</u>	Excellent flexural strength and impact resistance

* Substrate: polished steel sheet, Film thickness = 10 µm, cured at 25°C/70%RH (Tack-free time varies depending on temperature and humidity)

(Not specified values)


Exterior coatings for vehicles



Floor coatings

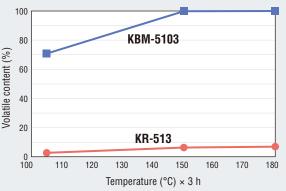
Type AR Alkoxysilyl Groups: Containing / Reactive Groups: Containing

Type AR oligomers contain alkoxysilyl groups and organic reactive functional groups, meaning they can be used to promote adhesion between organic and inorganic materials. Think of them as oligomeric type coupling agents.

- RO: Functional groups which bind chemically to inorganic materials (glass, metal, silica stone etc..)
 Methoxy groups
 Ethoxy groups
- X: Functional groups which bind chemically to organic materials such as synthetic resins
 Vinyl groups
 Epoxy groups
 - Methacrylic groups
 Mercapto groups

Product List

Parameter Product name	Reactive groups	Alkoxy group	Viscosity at 25°C mm²/s	Refractive index at 25°C	Alkoxy group content wt%	Features
KR-517	Ероху	Methoxy/Ethoxy	12	1.414	50	Epoxy equivalent 830 g/mol
X-41-1059A	Ероху	Methoxy/Ethoxy	30	1.434	42	Epoxy equivalent 350 g/mol
X-24-9590	Ероху	Methoxy	350	1.448	9.5	Epoxy equivalent 590 g/mol
KR-516	Epoxy/Methyl	Methoxy	50	1.441	17	Epoxy equivalent 280 g/mol
KR-518	Mercapto	Methoxy/Ethoxy	20	1.418	50	Mercapto equivalent 800 g/mol
X-41-1818	Mercapto	Ethoxy	14	1.417	60	Mercapto equivalent 850 g/mol
KR-519	Mercapto/Methyl	Methoxy	5	1.422	30	Mercapto equivalent 450 g/mol
KR-513	Acrylate/Methyl	Methoxy	35	1.450	20	Acrylic equivalent 210 g/mol
X-40-9296	Methacrylate/Methyl	Methoxy	20	1.450	22	Methacryl equivalent 230 g/mol
KR-511	Vinyl/Phenyl	Methoxy	100	1.518	13	Vinyl equivalent 530 g/mol


(Not specified values)

Applications

Coupling Agents

A key difference between these products and monomeric silane coupling agents lies in their **volatility**. Graph on the right is a graph comparing an acrylic oligomer to a silane coupling agent when the two are heated. With the oligomer, the **active ingredient remains in place even at high temperatures**, to better aid with adhesion.

17

Silicone Oligomers

Type R Alkoxysilyl Groups: Not Containing / Reactive Groups: Containing

Silicone oligomers contain only epoxy groups as their reactive functional groups, and can be formulated to cure by way of an acid anhydride, photo-cationic or thermal-cationic curing system.

Silicone oligomers cure using the same mechanisms as epoxy resins do, while offering excellent heat resistance and high Tg (gloss-transition temperature) that are characteristic of siloxane bonds.

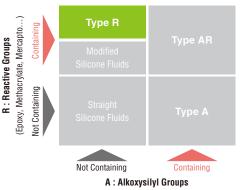
The cyclosiloxane-based oligomers exhibit low shrinkage during curing.

Features

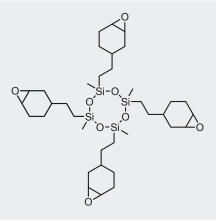
- Silicones which contain reactive functional groups
- Relatively low molecular weights, and good compatibility with other materials
- Cure with light or heat when an acid generator is added
- Cure with heat when an acid anhydride- or amine-based curing agent is added
- KR-470 has excellent cure properties and will be very hard & strong after curing.
- KR-470 exhibits low shrinkage during curing.

Product List

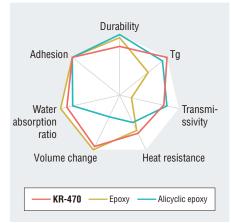
General Properties


Product nam Parameter	KR-470	X-40-2678
Number of epoxy functional groups	4	2
Viscosity at 25°C mPa-	3,000	120
Epoxy equivalent g/mo	1 200	290

(Not specified values)


(Not specified values)

Comparison Data of Cured Materials


Product name Parameter		KR-470	Ероху	Alicyclic epoxy		
Cure system		Acid anhydride curing				
Hardness Shore D		87	85	88		
Flexural modulus MPa		2,590	2,940	3,020		
	Curing shrinkage ratio (Hydrometer method) %		-1.7	-5.3		
Boiling water absorpt	ion ratio %	0.46	0.28	0.56		
Tg °C		191	150	193		
Coefficient of liner expansion	< Tg	9.7	7.7	6.9		
(×10 ⁻⁵ /K)	> Tg	15.4	17.6	16.2		

Basic Structure of KR-470

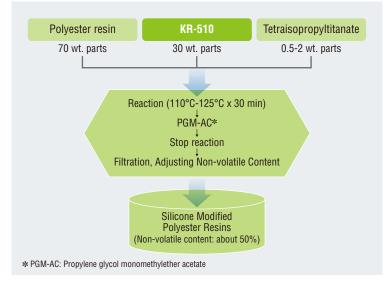
Comparison Chart of Cured Materials

Main Products

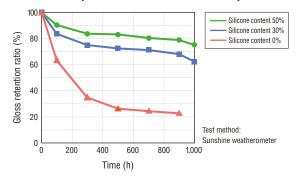
Type A KR-510 Methyl/Phenyl Group-containing Alkoxy Oligomer

KR-510 is a Methyl/Phenyl silicone oligomer that contains methoxy groups.

Because it has phenyls, KR-510 has excellent compatibility with organic resins.


KR-510 can be mixed with organic resin containing groups that can react with methoxysilyls or be used in a methanol-releasing reaction to produce resins with **improved heat resistance**, weatherability and chemical resistance. **KR-510** can also be used as a **reactive diluent**.

Application Examples > Imparting siloxane structure of silicone oligomers into polyester resins, weatherability is improved.


Reaction mechanism

Polyester Resin Modification with Silicone Oligomers

Weatherability Test Result of Silicone Modified Polyester Resin

General Properties

Product name Parameter	KR-510
Appearance	Colorless transparent liquid
Viscosity at 25°C mm ² /s	100
Specific gravity at 25°C	1.16
Refractive index at 25°C	1.509
Methoxy content wt%	17
Active ingredient %	100

(Not specified values)

Film Properties

Cure condition	285°C x 1 min	285°C x 10 min
Pencil hardness	2H	4H
Adhesion (cross cut adhesion test)	100/100	100/100
Impact resistance Dupont test cm	Min. 50	Min. 50
MEK* rubbing times	100	Min. 100
Xylene rubbing times	10	Min. 100
* MEK: Methyl ethyl ketone		(Not specified values)

Type AR KR-516/KR-517 Epoxy Group-containing Alkoxy Oligomers

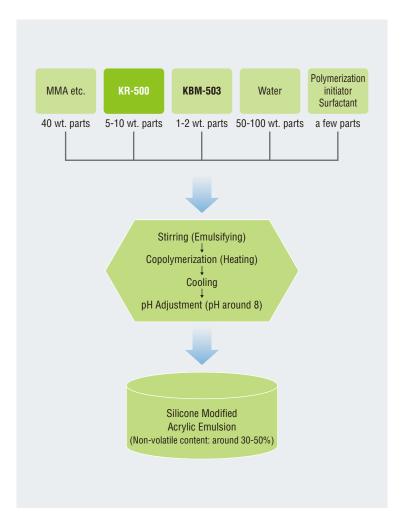
In **KR-516** and **KR-517**, the organic functional groups (epoxy groups) and hydrolysable groups (alkoxy groups) are contained within the same molecule. This allows them to be used as **coupling agents to enhance bonding** between organic resins and inorganic materials. In addition, these oligomers can react with the active hydroxyl groups in an organic resin to form a copolymer. The organic resin will then be **hydrophilic** and have **durable anti-stain properties** and **improved weatherability**.

\langle Application Examples \rangle

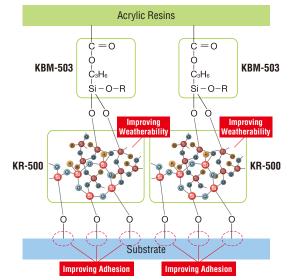
- Coupling agents
- Hydrophilic anti-stain agents

General Properties

Product name Parameter	KR-516	KR-517
Appearance	Pale yellow transparent liquid	Pale yellow transparent liquid
Viscosity at 25°C mm ² /s	50	12
Specific gravity at 25°C	1.15	1.11
Refractive index at 25°C	1.441	1.414
Epoxy content g/mol	280	830
Active ingredient %	100	100


Type A KR-500 Methyl Group-containing Alkoxy Oligomer

KR-500 is methyl silicone oligomer that contains methoxy groups.


This oligomer can be mixed with organic resin containing groups that can react with methoxysilyls or be used in a methanol-releasing reaction to produce resins with **improved heat resistance**, weatherability and **chemical resistance**. Water-borne resin application is available.

\langle Application Examples \rangle

Modification via dehydration-condensation or dealcoholization-condensation. Results in improved adhesion to substrates and enhanced weatherability.

Model of Resin Modification

General Properties

Product name Parameter	KR-500
Features	Medium degree of polymerization
Appearance	Colorless transparent to pale yellow cloudy liquid
Viscosity at 25°C mm ² /s	25
Specific gravity at 25°C	1.15
Refractive index at 25°C	1.403
Methoxy content wt%	28
Active ingredient %	100

(Not specified values)

Type AR KR-513 Acrylate Group-containing Alkoxy Oligomer

In **KR-513**, the organic functional groups (acrylic groups) and hydrolysable groups (methoxy groups) are contained within the same molecule. This allows **KR-513** to be used as a **coupling agent to enhance bonding** between organic resins and inorganic materials.

< Application Examples >

Coupling agents

General Properties

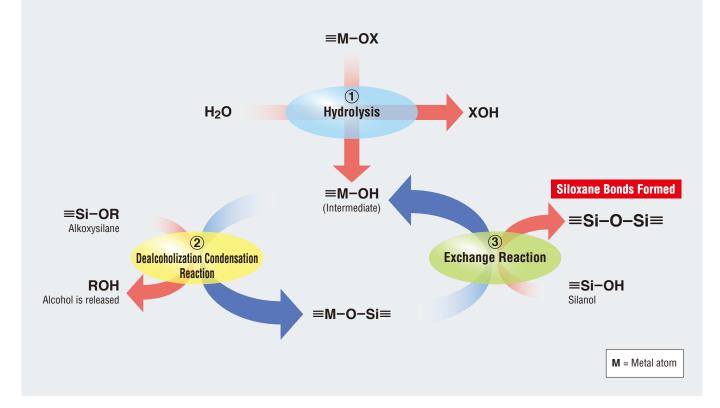
Product name Parameter	KR-513
Appearance	Colorless to pale yellow transparent liquid
Viscosity at 25°C mm ² /s	35
Specific gravity at 25°C	1.15
Refractive index at 25°C	1.450
Acrylic equivalent g/mol	210
Active ingredient %	100

(Not specified values)

Product Features & Packaging Options

Category	Product name	Туре	Appearance	Non-volatile content 105°C×3 h %	Active ingredient %	Viscosity at 25°C mPa⋅s	Specific gravity at 25°C	Refractive index at 25°C	Standard curi	ng conditions
	KR-220L		White flake	—	100	—	1.40	—	—	_
	KR-220LP	Mathud Ture	White powder	White powder — 100 — 1.40 -		—	—	_		
	KR-242A	Methyl Type	Colorless transparent liquid	50	—	12 mm ² /s	1.04	—	Heat cure*1	200°C×20 min
	KR-251		Colorless transparent liquid	20	—	18	0.92	—	Room temperature cure*2	25°C×20 min
	KR-112		Colorless transparent to pale yellow translucent liquid	70	—	200 mm²/s	1.06	—	Room temperature cure*2	25°C×15 min
	KR-211		Colorless to pale yellow transparent liquid	70	—	46	1.10	—	_	_
	KR-212		Colorless transparent liquid	70	—	28	1.07		—	—
	KR-255		Colorless to pale brown transparent liquid	50	—	85 mm²/s	1.02	—	Room temperature cure*2	25°C×20 min
	KR-271		Pale yellow transparent liquid	50	—	200	1.01	—	Heat cure*1	250°C×60 min
	KR-272	Methyl/Phenyl Type	Pale yellow transparent liquid	50		150	1.01	—	Heat cure	250°C×60 min
	KR-282		Colorless to pale yellow transparent liquid	50	—	150	1.01	—	Heat cure*1	250°C×60 min
<u>\$</u>	KR-300		Colorless transparent to pale yellow cloudy liquid				Heat cure*1	250°C×60 min		
lic	KR-311		Pale yellow transparent liquid	60	_	25 mm²/s	1.06		Heat cure*1	250°C×60 min
ne	X-40-2667A		Pale yellow transparent liquid	—	100	2,000	1.16	1.536	Heat cure*1	200°C×20 min
Ree	X-40-2756		Pale yellow transparent liquid	—	100	1,000	1.13	1.498	Heat cure*1	200°C×180 min (Tack-free 1h)
Silicone Resins	KR-480		White flake	—	100	-	—	—	—	—
	KR-216	Propyl/Phenyl Type	Pale yellow transparent solid	—	100	-	0.60	—	—	—
	ES-1001N	Epoxy Resins	Pale yellow transparent liquid	45	_	350	1.01	_	Heat cure*1	200°C×30 min
	ES-1002T		Pale yellow transparent liquid	60	—	400	1.04	—	Heat cure*1	200°C×60 min
	ES-1023	difie	Pale yellow transparent liquid	45	—	250	1.00	—	Heat cure*1	200°C×30 min
	KR-5206	Modified Organic	Pale yellow transparent liquid	50	—	400	0.99	—	Room temperature cure*2	25°C×30 min
	KR-5230	Janic	Colorless to yellow transparent liquid	60	—	440	1.13	—	Heat cure*1	200°C×30 min
	KR-5234	Polyester Resins	Pale yellow transparent liquid	60	—	400	1.11	—	Heat cure	180°C×20 min
	KR-5235		Colorless to pale yellow transparent liquid	60	_	210	1.10	_	Heat cure ^{≉1}	200°C×20 min
	KR-114B	Rubber Type	Colorless transparent liquid	50	_	1,000 mm ² /s	0.86	_	Room temperature cure*2	25°C×20 min
	KC-89S		Colorless transparent liquid	—	100	5 mm ² /s	1.08	1.394	—	—
	KR-515		Colorless transparent liquid	—	100	7 mm ² /s	1.11	1.397	—	—
	KR-500	Methyl Type	Colorless transparent to pale yellow cloudy liquid	—	100	25 mm ² /s	1.15	1.403	—	—
	X-40-9225		Colorless transparent liquid	—	100	100 mm ² /s	1.18	1.407	—	—
	X-40-9246		Colorless to pale yellow transparent liquid	—	100	80 mm ² /s	1.09	1.407	—	—
	X-40-9250		Colorless transparent to pale brown cloudy liquid	—	100	80 mm ² /s	1.11	1.407	_	—
	KR-401N		Colorless transparent liquid	—	100	20 mm ² /s	1.12	1.432		
	X-40-9227		Colorless transparent liquid	—	100	15 mm ² /s	1.07	1.460	—	_
	KR-510	Methyl/Phenyl Type	Colorless transparent liquid	—	100	100 mm ² /s	1.16	1.509	—	_
60	KR-9218		Colorless to pale yellow transparent liquid	—	100	40 mm ² /s	1.11	1.529	_	_
lii	KR-213		Colorless to pale yellow transparent liquid	—	100	16 mm ² /s 1.2 mm ² /s	1.11	1.525		
One	KR-400 X-40-2327	ည်း Methyl Type	Colorless to pale yellow transparent liquid	—	100		0.97	1.390	Room temperature cure*2	25°C×30 - 60 min
Silicone Oligomers	KR-401	Methyl Type	Colorless to pale yellow transparent liquid Pale yellow transparent liquid	_	100 100	0.9 mm ² /s 20 mm ² /s	0.95 1.12	1.382 1.435	Room temperature cure*2 Room temperature cure*2	25°C×5 - 10 min 25°C×30 - 60 min
gor	KR-401 KR-517	метнул пенуг туре	Pale yellow transparent liquid	_	100	12 mm ² /s	1.12	1.435		
ner	X-41-1059A	Ероху Туре	Colorless transparent to yellow cloudy liquid	_	100	30 mm ² /s	1.14	1.434	_	_
^o	X-24-9590		Pale brown transparent liquid	_	100	350 mm ² /s	1.06	1.448	_	_
	KR-516	Epoxy/Methyl Type	Pale yellow transparent liquid	_	100	50 mm ² /s	1.15	1.441	_	_
	KR-518		Colorless to pale red transparent liquid	_	100	20 mm ² /s	1.13	1.418	_	_
	X-41-1818	R Mercapto Type	Colorless transparent to pale red cloudy liquid	_	100	14 mm ² /s	1.10	1.417	_	_
	KR-519	Mercapto/Methyl Type		_	100	5 mm²/s	1.11	1.422	—	_
	KR-513	Acrylic/Methyl Type	Colorless to pale yellow transparent liquid	—	100	35 mm²/s	1.15	1.450	_	_
	X-40-9296	Methacrylic/Methyl Type	Colorless transparent liquid	—	100	20 mm ² /s	1.12	1.450	_	_
	KR-511	Vinyl/Phenyl Type	Colorless to pale yellow transparent liquid	—	100	100 mm ² /s	1.11	1.518	_	—
	KR-470		Colorless transparent liquid	—	100	3,000	1.10	1.487	_	—
	X-40-2678	R Alicyclic Epoxy Type	Colorless to pale yellow transparent liquid	—	100	120	1.04	1.465	—	—

*1 Conditions until material becomes ethanol resistant *2 Time until material is no longer tacky *3 Propyleneglycol monomethylether acetate *4 3-Methyl-3-methoxybutyl acetate *5 2 L round cans *6 Fiber drums *7 Mini-drums *8 Paper bags *9 Glass bottles *10 20 L round cans


Product Features & Packaging Options

Calvant	Main applications	Fasturas	UN hazard		Packaging	
Solvent	Main applications	Features	classification	1L cans	18L cans	200L drums
None	Heat resistant and flame retardant binders	White flake, excellent heat resistance and flame retardance, very little smoking by heating	Not applicable	1 kg*5	10 kg*6	—
None	Heat resistant and flame retardant binders	Powder type of KR-220L	Not applicable	1 kg*5	10 kg*6	—
Toluene, isopropyl alcohol	Heat resistant and flame retardant binders	Excellent heat resistance and flame retardance	UN-1866	1 kg	20 kg*7	200 kg
Toluene	Moisture proofing and insulating coatings	Thin hard coating	UN-1866	1 kg	15 kg	160 kg
Toluene, xylene	Moisture proofing and insulating coatings	Solvent resistant flexible coating	UN-1866	1 kg	16 kg	—
Xylene	Resin modification	Excellent compatibility	UN-1866	1 kg	18 kg	180 kg
Xylene	Resin modification	Excellent compatibility, more flexible than KR-211	UN-1866	1 kg	18 kg	200 kg
Toluene, xylene	Moisture proofing and insulating coatings	Glossy hard coating	UN-1866	1 kg	20 kg*7	200 kg
Xylene	Heat resistant paints	Excellent heat resistance and flexibility	UN-1866	1 kg	20 kg*7	200 kg
Xylene	Heat resistant paints	Excellent heat resistance	UN-1866	1 kg	20 kg*7	200 kg
Xylene	Heat resistant paints	Excellent flexibility and anti-cracking properties	UN-1866	1 kg	20 kg*7	200 kg
Xylene	Heat resistant paints	Excellent heat resistance high hardness coating	UN-1866	1 kg	18 kg	200 kg
Xylene	Heat resistant paints	Excellent heat resistance and compatibility with organic resins	UN-1866	1 kg	20 kg*7	200 kg
None	Molding	Solventless, addition cure type, excellent curability and low shrinkage	Not applicable	1 kg	18 kg	—
None	Molding	Solvent less, addition cure type, 1 part, high Tg	Not applicable	1 kg	18 kg	—
None	Resin modification	White flake, high phenyl content, excellent compatibility	Not applicable	1 kg*5	20 kg*8	—
None	Resin modification	Solid shape, solvent less, excellent compatibility	Not applicable	1 kg	10 kg*6	—
Xylene, diacetone alcohol, n-butanol	Heat resistant paints	Excellent anti-corrosion property, heat resistance and weatherability	UN-1866	1 kg	18 kg* ⁷	200 kg
Toluene	Heat resistant paints	Excellent anti-corrosion property and chemical resistance	UN-1866	1 kg	18 kg*7	200 kg
Xylene, diacetone alcohol	Heat resistant paints	Excellent anti-corrosion property	UN-1866	1 kg	18 kg*7	180 kg
Xylene	Heat resistant paints	Excellent flexibility and adhesion	UN-1866	1 kg	16 kg*7	200 kg
PGMAC*3	Heat resistant paints	Excellent flexural resistance, heat resistance and weatherability	UN-1866	1 kg	18 kg*7	200 kg
PGMAC*3(23%), MMBAC*4(13%) isopropyl alcohol (4%)	Heat resistant paints	Retains glossy appearance under high temperature	UN-1866	1 kg	18 kg	200 kg
PGMAC* ³ (20%), MMBAC* ⁴ (10%) isobutyl alcohol (10%)	Heat resistant paints	Excellent releasability and non-stick property	UN-1866	1 kg	18 kg*7	200 kg
Ligroin	Moisture proofing and insulating coatings	Wax-like soft coating, Finished coating can be removed easily with solvents	UN-1866	1 kg	15 kg* ⁷	170 kg
None	Coatings, resin modification	Low DP (degree of polymerization)	Not applicable	1 kg	20 kg*7	200 kg
None	Coatings, resin modification	Medium DP	UN-1992	1 kg	18 kg	200 kg
None	Coatings, resin modification	Medium DP	UN-1993	1 kg	18 kg*7	200 kg
None	Coatings, resin modification	High DP	Not applicable	1 kg	18 kg	200 kg
None	Coatings, resin modification	Improves flexibility	UN-1993	1 kg	18 kg	200 kg
None	Coatings, resin modification	Improves flexibility, thick coatings	Not applicable	1 kg	18 kg	_
None	Coatings, resin modification	Low phenyl content	UN-1993	1 kg	18 kg	—
None	Coatings, resin modification	Improves flexibility	Not applicable	1 kg	18 kg	_
None	Resin modification	Forms high hardness coatings	Not applicable	1 kg	18 kg	200 kg
None	Resin modification	Forms medium hardness coatings	Not applicable	1 kg	18 kg	200 kg
None	Resin modification	High phenyl content	Not applicable	1 kg	18 kg	200 kg
None	Coatings	Forms high hardness coatings	UN-1993	1 kg	18 kg*7	180 kg
None	Coatings	Rapid cure, Finished coating can be recoated	UN-2924	1 kg* ⁹	18 kg* ¹⁰	_
None	Coatings	Excellent flexural and impact resistance	UN-1993	1 kg	18 kg	_
None	Coupling agents	Epoxy equivalent 830 g/mol	Not applicable	1 kg	16 kg	—
None	Coupling agents	Epoxy equivalent 350 g/mol	UN-1993	1 kg	18 kg	_
None	Coupling agents	Epoxy equivalent 590 g/mol	Not applicable	1 kg	16 kg	_
None	Coupling agents	Epoxy equivalent 280 g/mol	Not applicable	1 kg	18 kg	_
None	Coupling agents	Mercapto equivalent 800 g/mol	UN-1993	1 kg	16 kg	_
None	Coupling agents	Mercapto equivalent 850 g/mol	UN-1993	1 kg	18 kg	_
None	Coupling agents	Mercapto equivalent 450 g/mol	Not applicable	1 kg	16 kg	_
None	Coupling agents	Acrylic equivalent 210 g/mol	Not applicable	1 kg	18 kg	_
None	Coupling agents	Metacryl equivalent 230 g/mol	Not applicable	1 kg	18 kg	_
None	Flame retardant, coupling agents	Vinyl equivalent 530 g/mol	Not applicable	1 kg	18 kg	_
None	Molding	Low cure shrinkage, Epoxy equivalent 200 g/mol	Not applicable	1 kg	18 kg	_
None	Molding	Crack resistance, Epoxy equivalent 290 g/mol	Not applicable	1 kg	18 kg	_
l	Č.	· · · · · ·		3		

(Not specified values)

Product name	Туре	Active vpe ingredient	Metal content	Solvent	Applicable products and cure conditions			Additive amount	Features	
	туре	%		Solvent	Applicable products	Structure	Heating	wt%	reatures	
D-220	Phosphoric acid type	25		lsopropyl alcohol	Resin	Silanol groups	Necessary	5 to 10	Very high activity	
X-40-2309A	Phosphoric	100			Resin	Silanol groups	Necessary	401 50	High activity, can accelerate curing;	
X-40-2309A	acid type	100	_		Oligomer (TypeA)	Alkoxysilyl groups	Not necessary	10 to 50	contains reactive diluent	
D-25	Titanium	100	- 4.4		Resin	Silanol groups	Necessary	0.5.4-0	Higher activity than D-20	
D-20	type	100	14		Oligomer (TypeA)	Alkoxysilyl groups	Not necessary	0.5 to 3		
D 00	Titanium	um			Resin	Silanol groups	Necessary	0.1 5		
D-20	0 type 1	100 21	21	_	Oligomer (TypeA)	Alkoxysilyl groups	Not necessary	2 to 5	Mild reactivity	
111X-1/5	Titanium	50	50 8	Toluene	Resin	Silanol groups	Necessary	0.4- 5	Solvent diluting type (Easy to use)	
	type	type 50			Oligomer (TypeA)	Alkoxysilyl groups	Not necessary	3 to 5		
DX-9740	Aluminum	100	100 9		Resin	Silanol groups	Necessary	0.5 to 5	Forms high hardness	
DX-9/40	type	type		_	Oligomer (TypeA)	Alkoxysilyl groups	Not necessary	0.5 10 5	coatings	
CAT-AC	Aluminum	50	4	Teluene	Resin	Silanol groups	Necessary	0.5 to 10	Solvent diluting type	
GAT-AG	type 50		4	Toluene	Oligomer (TypeA)	Alkoxysilyl groups	Not necessary	0.5 10 10	(Easy to use)	
KP-390	Amine type	50		n-butanol	Modified epoxy resins	Epoxy groups	Not necessary	5 to 15	Mild reactivity	
D-15	Zinc type	27	4	Xylene, mineral turpentine	Resin	Silanol groups	Necessary	1 to 3	Low reactive type	
D-31	Iron type	70	8	Mineral turpentine	Resin	Silanol groups	Necessary	1 to 5	Low reactive type	

Reaction Mechanism of Metal Catalysts

Handling Precautions

- Seal container tightly and store in a cool, dark place (25°C or below, out of direct sunlight) with good ventilation. Keep away from heat and flame. Moreover, avoid some contaminations (acids, bases and certain organo-metallic compounds) to prevent polymerization and gelation.
- When painting, coating, curing or drying, be sure to keep the product away from heat and flame, and provide adequate ventilation.
- 3. When exposed to moisture or humidity, most silicone resins and oligomers will hydrolyze and undergo a chemical change that involves the release of methanol or ethanol. In the case of KR-401, 1-butanol is released. For this reason, their containers should not be left open, but rather sealed tightly after use to keep out moisture and humidity. Ideally, air in the container should first be replaced with dry nitrogen.
- 4. Containers used for silicone resins and oligomers should be made of sheet steel, stainless steel or tinplate, and should be welded or externally soldered. Silicone resins and oligomers should not come in contact with lead, solder or zinc.
- 5. Contamination by organic varnishes and certain other substances will reduce the performance of the product.
- 6. Use of Curing Agents

When using a curing agent to speed up the curing process, be sure to determine the appropriate type, amount and curing conditions, and see that curing is done in the proper conditions. Be aware of the pot life after adding curing agents. Curing agents for silicone resins and oligomers are typically formulated with aluminum (AI) chelates or zinc (Zn), iron (Fe), cobalt (Co) and manganese (Mn) octylates or naphthalates. The table below will give a rough idea of the amount of metal that will be used compared to that of the resin.

AI (Aluminum)	0.02 to 0.1%
Zn (Zinc)	0.05 to 0.3%
Fe (Iron)	0.05 to 0.3%
Co (Cobalt)	0.05 to 0.3%
Mn (Manganese)	0.05 to 0.3%

7. Use of Pigments and Fillers

Silicone resins and oligomers may react with lead (Pb), calcium (Ca) and chromium (Cr) based pigments or with zinc oxide during the manufacturing process or in storage and will start to gel. Exposure to acids, bases and certain organometallic compounds may have adverse effects on curing properties and shelf life or, in the case of X-40-2667A, cause the release of hydrogen gas. When compounding with fillers or pigments, it is important to perform tests to determine the effects of adding these materials prior to actual use.

Safety and Hygiene

 Silicone resins and oligomers may cause skin irritation. When handling the products, take care to avoid contact with the skin and mucous membranes by wearing protective glasses and protective gloves.

In case of skin contact, immediately wipe off with dry cloth and then flush thoroughly with running water. In case of accidental eye contact, flush immediately with plenty of clean water for at least 15 minutes and then seek medical attention. Contact lens wearers must take special care. If the products get into the eye, the contact lens may become stuck to the eye.

- 2. Solvent type silicone resins contain volatile solvents and have high vapor pressure at room temperature. When handling the product, make sure there is adequate ventilation to avoid breathing the solvent vapors. In general, these solvents or products which contain these solvents should be handled according to the applicable EHS regulations.
- 3. In a small place with poor ventilation, please wear a protective mask. And it is recommended to install a local exhaust ventilation system. If you become uncomfortable by inhaling the vapors, move to an area with fresh air immediately.
- 4. Keep out of reach of children.
- 5. Please read the Safety Data Sheets (SDS) before use. SDS can be obtained from our Sales Department.

Silicone Division Sales and Marketing Department ${\rm I\hspace{-0.5mm}I}$

Marunouchi Eiraku Bldg., 4-1, Marunouchi 1-chome, Chiyoda-ku, Tokyo 100-0005, Japan Phone : +81-(0)3-6812-2407 Fax : +81-(0)3-6812-2414

Shin-Etsu Silicones of America, Inc.

1150 Damar Drive, Akron, OH 44305, U.S.A. Phone : +1-330-630-9860 Fax : +1-330-630-9855

Shin-Etsu do Brasil Representação de Produtos Químicos Ltda.

Rua Coronel Oscar Porto, 736 - 8°Andar - Sala 84, Paraíso São Paulo - SP Brasil CEP: 04003-003 Phone : +55-11-3939-0690 Fax : +55-11-3052-3904

Shin-Etsu Silicones Europe B.V.

Bolderweg 32, 1332 AV, Almere, The Netherlands Phone : +31-(0)36-5493170 Fax : +31-(0)36-5326459 (Products & Services: Products for Cosmetics Application)

Germany Branch

Kasteler Str. 45, 65203 Wiesbaden, Germany Phone : +49-(0)611-71187290 (Products & Services: Products for Industrial Applications)

Shin-Etsu Silicone Korea Co., Ltd.

GT Tower 15F, 411, Seocho-daero, Seocho-gu, Seoul 06615, Korea Phone : +82-(0)2-590-2500 Fax : +82-(0)2-590-2501

Shin-Etsu Silicone International Trading (Shanghai) Co., Ltd.

29F Junyao International Plaza, No.789, Zhao Jia Bang Road, Shanghai 200032, China Phone : +86-(0)21-6443-5550 Fax : +86-(0)21-6443-5868

Guangzhou Branch

Room 2409-2410, Tower B, China Shine Plaza, 9 Linhexi Road, Tianhe, Guangzhou, Guangdong 510610, China Phone : +86-(0)20-3831-0212 Fax : +86-(0)20-3831-0207

- The data and information presented in this catalog may not be relied upon to represent standard values. Shin-Etsu reserves the right to change such data and information, in whole or in part, in this catalog, including product performance standards and specifications without notice.
- Users are solely responsible for making preliminary tests to determine the suitability of products for their intended use.
 Statements concerning possible or suggested uses made herein may not be relied upon, or be construed, as a guaranty of no patent infringement.
- For detailed information regarding safety, please refer to the Safety Data Sheet (SDS).
- The silicone products described herein have been designed, manufactured and developed solely for general industrial use only; such silicone products are not designed for, intended for use as, or suitable for, medical, surgical or other particular purposes. Users have the sole responsibility and obligation to determine the suitability of the silicone products described herein for any application, to make preliminary tests, and to confirm the safety of such products for their use.

Shin-Etsu Silicone Taiwan Co., Ltd.

Hung Kuo Bldg. 11F-D, No. 167, Tun Hua N. Rd., Taipei, 105406 Taiwan, R.O.C. Phone : +886-(0)2-2715-0055 Fax : +886-(0)2-2715-0066

Shin-Etsu Singapore Pte. Ltd.

1 Kim Seng Promenade #15-05/06 Great World City, Singapore 237994 Phone : +65-6743-7277 Fax : +65-6743-7477

Shin-Etsu Silicones Vietnam Co., Ltd.

Unit 4, 11th Floor, A&B Tower, 76A Le Lai Street, Ben Thanh Ward, District 1, Ho Chi Minh City, Vietnam Phone : +84-(0)28-35355270

Shin-Etsu Silicones India Pvt. Ltd.

Unit No. 403A, Fourth Floor, Eros Corporate Tower, Nehru Place, New Delhi 110019, India Phone : +91-11-43623081 Fax : +91-11-43623084

Shin-Etsu Silicones (Thailand) Ltd.

7th Floor, Harindhorn Tower, 54 North Sathorn Road, Silom Bangrak, Bangkok 10500, Thailand Phone : +66-(0)2-632-2941 Fax : +66-(0)2-632-2945

- Users must never use the silicone products described herein for the purpose of implantation into the human body and/or injection into humans.
- Users are solely responsible for exporting or importing the silicone products described herein, and complying with all applicable laws, regulations, and rules relating to the use of such products. Shin-Etsu recommends checking each pertinent country's laws, regulations, and rules in advance, when exporting or importing, and before using the products.
- Please contact Shin-Etsu before reproducing any part of this catalog. Copyright belongs to Shin-Etsu Chemical Co., Ltd.

	The Development and Manufacture of Shin-Etsu Silicones are based on the following registered international quality and environmental management standards.					
	Gunma Complex ISO 9001 ISO 14001 (JCQA-0004 JCQA-E-0002)					
	Naoetsu Plant ISO 9001 ISO 14001 (JCQA-0018 JCQA-E-0064)					
CM009	Takefu Plant ISO 9001 ISO 14001 (JQA-0479 JQA-EM0298)					

"Shin-Etsu Silicone" is a registered trademark of Shin-Etsu Chemical Co., Ltd. https://www.shinetsusilicone-global.com/