UV Cure Liquid Silicone Rubbers

Improved reliability for electrical and electronic devices, shorter processing times, and heating-free processes with UV cure liquid silicone rubbers.

Shin-Etsu offers a wide variety of UV cure liquid silicone rubbers, including a fast curing radical-polymerization type, a UV addition type that is irradiated with UV light and then cures fully at room temperature or with heating, and a combination of radical and condensation types that cures via condensation reaction in sections where the UV rays can't reach.

With products based on silicone polymers, fluorosilicone polymers and polyimide silicone polymers, we can provide the right product for specific requirements and applications.

Features of Silicone	Р3
Three Cure Types	P4
Application Examples of UV Cure Liquid Silicone Rubbers	P5
 Radical Polymerization Type Sililcone P6- Adhesives and sealants, coating agents, and high-reliability silicone adhesives Temporary adhesive silicones Polyimide silicones 	-11
 UV Addition Type Silicone P12- LOCA (Liquid Optical Clear Adhesive) Adhesive sealants, and PDMS materials Gel, thermal interface materials, and gas barrier materials 	-15
 Combination of Radical and Condensation Type Silicone ••••••••••P16- Adhesives and sealants 	17
Packaging Options/Product Index	218
Handling Precautions	219

Features of Silicone

Silicones have an amazing array of properties.

Silicones consist of a main chain of inorganic siloxane linkages (Si-O-Si) plus side chains which contain organic groups. Silicones are **hybrid polymers** that contain **both inorganic and organic components**.

The main chain of a silicone consists of siloxane linkages which are stable and have a high bonding energy.

Compared to organic polymers, which have a carbon backbone (C-C/bonding energy: 85 kcal/mol), silicones have superior **heat resistance and weatherability** (UV light, ozone). This is due to the greater stability of siloxane bonds, which have a bonding energy of 106 kcal/mol.

With their long bond length and high bond angle, siloxane bonds have weak intermolecular forces and move freely.

Siloxane bonds have a bond length of 1.64 Å and bond angle of 134°. Compared to carbon bonds (bond distance: 1.54 Å, bond angle: 110°), they have a long bond distance, high bond angle, and a low rotational energy barrier. As a result, siloxane bonds move more freely and intermolecular forces are weak. These characteristics manifest themselves in features of the silicone material, including **softness**, **gas permeability, cold resistance, and small changes in viscosity due to temperature changes**.

The molecules of silicone polymers are covered by hydrophobic methyl groups, and surface energy is low.

The backbone of a silicone polymer molecule is a twisted helical structure. The molecules are almost completely covered by hydrophobic methyl groups, and surface energy is low. This gives rise to unique properties including **water repellency and easy release**.

Furthermore, silicones are low-polarity polymers so they exhibit **low moisture absorption**.

Silicones: compounds which feature a main chain of siloxane bonds

Three Cure Types

Shin-Etsu offers a wide variety of UV cure liquid silicone rubbers, including a fast curing radical-polymerization type, a UV addition type that is irradiated with UV light and then cures fully at room temperature or with heating, and a combination of radical and condensation types that cures via condensation reaction in sections where the UV rays can't reach.

Therefore, it is possible to select an appropriate curing type depending on the usage and application.

Radical Polymerization Type Feature: Rapid cure

UV Cure Liquid Silicone Rubbers

UV Addition Type Feature: Delayed cure **Combination of Radical and Condensation Type** Feature: Shaded section cure (dual cure)

Types and features of UV cure liquid silicone rubbers

Parameter	Туре	Radical polymerization	UV addition	Combination of radical and condensation	
Features		Rapid cure, Low to high hardness Both silicone and polyimide silicone available	Parts can be laminated after UV irradiation (process reversal). Ultra-low shrinkage with room temperature curing Shortened cure time with low-temperature heating	Cures by condensation reaction in sections where UV light won't reach	
By-product		-	-	Alcohol or acetone	
	UV	Rapid	Slow	Rapid	
Curability	Heating	NA	Room temperature to $80^{\circ}C \times 1$ h	NA	
	Moisture	NA	NA	> 1 day*1	
	Oxygen	Inhibits curing	No effect	Inhibits curing*2	
Cure- inhibition	S·N·P compound	No effect	Inhibits curing	No effect	
	Acid, alcohol etc.	No effect	Inhibits curing	Inhibits curing	

*1 The time required for curing depends on the thickness.

For curing properties of condensation reaction type, please refer to the catalog of liquid silicone rubbers for electrical & electronic applications.

*2 Oxygen-inhibited areas are cured by condensation reaction.

Application Examples of UV Cure Liquid Silicone Rubbers

Cure type Radical polymerization UV addition Combination of radical and condensation

Application

μ-LED chips and adhesive pads for Adhesive silicone transporting ultra-fine electronic components

Micro electronic parts

Applicable products

UV cure temporary adhesive silicones (P10)

Cure type

Radical polymerization

PDMS

Application

Transfer and high-precision molding materials

Applicable products KER-4690-A/B, KER-4691-A/B

Cure type UV addition

Kyushu Semiconductor KAW Co., Ltd. provides a photo of microfluidic wafers made of UV-PDMS.

Wearable devices

Display

Radical Polymerization Type Sililcone

- Silicone polymers with acrylic groups are cured by radical polymerization of acrylic groups under a photopolymerization initiator.
- Since it cures immediately after UV irradiation, processing time can be shortened.
- Broad lineup of sealing materials that exhibit excellent moisture absorption reflow resistance, black type, polyimide silicone, temporary adhesive silicone, etc.

Precautions when using

- Because the radical polymerization type is susceptible to oxygen inhibition,
- please irradiate UV light under an inert gas (nitrogen atmosphere) or through a transparent release film.
 Recommended UV lamps vary depending on the product.

Application example: under nitrogen atmosphere

Shin-Etsu simple nitrogen replacement system

UV-LED & metal halide lamp wavelength

Comparison of cure shrinkage

Point Cure shrinkage and internal stress of the UV cure liquid silicone rubbers is low compared to the heat cure type.

Type Parameter	Radical polymerization type	UV addition type	Heat cure epoxy material (third-party product)
	UV light source: Metal halide lamp	UV light source: LED-UV (365 nm)	
Curing conditions	Illuminance: 100 mW/cm ²	Illuminance: 300 mW/cm ²	150°C × 1 h
	Irradiation time: 40 s	Irradiation time: 10 s + room temperature × 24 h	
Appearance after curing			
Internal stress during curing	Low	Low	High

Radical Polymerization Type Silicone Materials

- We offer a wide range of products, including high hardness, low refractive index, and black types.
- They can be selected according to various applications such as coating, parts fixing, and potting.

General properties

Product name		Product name	KUV-3433-UV	KFB-4000-11V	KFB-4700-11V	KFB-4800-11V	KFR-4700BK-UV	KFR-4910-11V	FF-90-UV
Parameter			100 0400 00	1211 4000 00	NEIT 4700 00	1000 00		1000	12 30 07
Brief descript	tion		Coating	High hardness	High hardness	High hardness	High hardness, black color	Gel	Gel, fluorinated silicone rubber
Reaction med	chanism		Radical	Radical	Radical	Radical	Radical	Radical	Radical
Appearance			Translucent	Colorless transparent	Pale yellow transparent	Pale yellow transparent	Black	Colorless transparent	Colorless transparent
Viscosity		mPa⋅s	860	2,500	50	110	6,700	3,000	640
Refractive inc	dex		NA	1.43	1.51	1.53	1.51	1.45	1.39
	UV ligh	it source				Metal halide lamp			
Recommended	Illumin	ance* mW/cm ²	100	100	100	100	100	100	100
conditions	Irradiat	ion time s	40	20	10	10	40	20	50
	Estimated light intensity mJ/cm ²		4,000	2,000	1,000	1,000	4,000	2,000	5,000
Density at 23	°C	g/cm ³	1.01	1.14	1.10	1.11	1.15	1.03	1.23
		Shore D	NA	68	70	41	68	NA	NA
Hardness		Durometer A	25	NA	92	67	85	NA	NA
		Penetration	NA	NA	NA	NA	NA	90	65
Tensile stren	gth	MPa	0.62	4.8	18.6	4.1	NA	NA	NA
Elongation at	break	%	140	1	9	53	NA	NA	NA
Tensile lap-shear	strength (g	lass/glass) t=2.0 mm MPa	—	—	7.9	1.9	NA	NA	NA
Light transmissivity 400 nm, t=2.0 mm %		400 nm, t=2.0 mm %	NA	89	2	2	NA	_	_
LED-UV (365 nm) applicability		Applicable	Applicable	Applicable	Applicable	Applicable	Not applicable	Not applicable	
Atmospheric	air cure		Possible	Impossible	Impossible	Impossible	Impossible	Possible	Possible
Refrigeration	storage		Unnecessary	Unnecessary	Unnecessary	Unnecessary	Unnecessary	Unnecessary	Unnecessary
* Illuminance at	365 nm						•		(Not specified values)

* Illuminance at 365 nm

KUV-3433-UV reliability test data

Heat and moisture resistance (UV irradiation condition: 4,000 mJ/cm², durability test result after 7 days) Heat resistance condition: 100°C, moisture resistance test 85°C/85% RH

■ KUV-3433-UV migration data

Adhesion reliability data of KUV-3433-UV

Adhesion	Substrate (epoxy)								
(Crosscut method)	Initial	250 h	500 h	750 h	1,000 h				
100°C	25/25	25/25	25/25	25/25	25/25				
85°C/85%RH	25/25	25/25	25/25	25/25	25/25				

(Not specified values)

Cure properties of FE-90-UV according to light source, atmosphere and estimated light intensity

Estimated light intensity		2,000 r (100 mW/c	nJ/cm² m² × 20 s)*	5,000 r (100 mW/ci	nJ/cm² m² × 50 s)*	10,000 mJ/cm ² (100 mW/cm ² × 100 s)*		
Light source	sphere	Penetration	Surface condition	Penetration	Surface condition	Penetration	Surface condition	
Metal	Nitrogen	68	Cured	63	Cured	61	Cured	
lamp	Atmospheric air	70	Cured	64	Cured	63	Cured	
UV-LED	Nitrogen	71	Cured	63	Cured	61	Cured	
(365 nm)	Atmospheric air	69	Uncured	64	Uncured	63	Uncured	

* Illuminance at 365 nm

(Not specified values)

Radical Polymerization Type High-reliablity Silicone Adhesives

- Long-term reliability is excellent and the cure shrinkage rate is <0.1%, so there are a wide variety of uses.
- They can be selected according to the purpose, such as transparency, thixotropy, and exceptional moisture absorption reflow resistance.
- The KER-4300-UV series has higher heat resistance reliability and moisture absorption reflow resistance than conventional UV radical types. and can be used in automotive applications and in products requiring reflow mounting.

General properties

Product name Parameter		KER-4301-UV	KER-4302-UV	KER-4303-UV	KER-4304-UV	KER-4320-UV
Brief description		Transparent, flowable	Transparent, thixotropic	Resistant to oxygen inhibition, hygroscopic reflow resistance, flowable	Resistant to oxygen inhibition, hygroscopic reflow resistance, thixotropic	Moisture absorption reflow resistance, thixotropic
Reaction me	chanism	Radical	Radical	Radical	Radical	Radical
Appearance		Colorless transparent	Colorless transparent	Yellow transparent	Yellow transparent	Yellow transparent
Viscosity	mPa⋅s	7,000	20,900	5,500	20,400	15,000
Refractive in	dex	1.44	1.44	1.44	1.44	1.44
	UV light source			Metal halide lamp		
Recommended	Illuminance* mW/cm ²	100	100	100	100	100
conditions	Irradiation time s	40	40	80	40	40
	Estimated light intensity mJ/cm ²	4,000	4,000	4,000	4,000	4,000
Density at 23	3°C g/cm ³	1.10	1.13	1.10	1.12	1.13
Hardness Di	urometer A	41	54	41 56		16
Tensile stren	gth MPa	4.0	4.0	2.6	3.8	2.1
Elongation at	t break %	110	100	100	80	320
Tensile lap-shear	strength (glass/glass) t=460 µm MPa	1.2	1.3	0.9	1.2	0.9 (t=80 µm)
Cure shrinka	ge %	< 0.1	< 0.1	< 0.1	< 0.1	—
Light transmi	issivity 400 nm, t=2.0 mm %	90	81	39	34	—
Moisture transmissivity 40°C x 24 h t=1.3 mm g/cm ²		46.6	46.6	52	46.1	51.8
LED-UV (365	5 nm) applicability	Applicable	Applicable	Applicable	Applicable	Applicable
Atmospheric	air cure	Impossible	Impossible	Possible	Possible	Impossible
Refrigeration	ı storage	Unnecessary	Unnecessary	Unnecessary	Unnecessary	Unnecessary
* Illuminance at	365 nm					(Not specified values)

* Illuminance at 365 nm

■ Curability of KER-4301 by light source/estimated light intensity

Estimated light intensity	Tensile	Tensile lap-shear strength (glass/glass) t=460 µm MPa						
Light source	4,000 mJ/cm ² (100 mW/cm ² × 40 s)*	12,000 mJ/cm ² (100 mW/cm ² × 120 s)*	30,000 mJ/cm ² (100 mW/cm ² × 300 s)*					
Metal halide lamp	1.2	1.0	1.3					
UV-LED (365 nm)	1.0	1.0	1.1					
Illuminance at 365 nm	·	·	(Not specified values)					

■ Curability of the KER-4300 series

UV light source: UV-LED, Illuminace: 100 mW/cm², Thickness: 500 µm

■ Young's modulus of KER-4301

■ Light transmissivity of the KER-4300 series

■ Reliability data for the KER-4300 series

Test conditions	KER-4301-UV		KER-4302-UV		KER-4303-UV			KER-4304-UV				
Parameter	Initial	150°C × 1,000 h	85°C/85% × 1,000 h	Initial	150°C × 1,000 h	85°C/85% × 1,000 h	Initial	150°C × 1,000 h	85°C/85% × 1,000 h	Initial	150°C × 1,000 h	85°C/85% ×1,000 h
Hardness	41	74	70	54	81	65	43	75	71	54	77	76
Elongation %	110	60	60	100	50	50	110	60	70	100	60	70
Tensile lap-shear strength (glass/glass) MPa	1.2	0.8	1.5	1.3	2.1	1.5	0.9	3.2	1.2	1.2	3.8	0.7

(Not specified values)

■ Test piece preparation flow

Appearance after moisture absorption reflow test

Test conditions: 85°C/85%RH \times 168 h \rightarrow 260°C \times 1 min \times 3 cycles

Radical Polymerization Type Temporary Adhesive Silicones

- A wide range of sticky force and hardness is available.
- They have stable sticky force and resilience (excellent repeat durability).
- Excellent in holding sticky force even after heat aging.

General properties

Product name Parameter		STP-102-UV	STP-103-UV	STP-104-UV	STP-106T-UV	
Brief descrip	tion	Medium sticky force	Medium sticky force, ultra low viscosity	Medium sticky force, ultra low viscosity High sticky force		
Reaction me	chanism	Radical	Radical	Radical	Radical	
Appearance		Pale yellow transparent	Pale yellow transparent	Pale yellow transparent	Pale yellow translucent	
Viscosity	mPa⋅s	1,650	170	290	250,000	
	UV light source		UV-LED (365 nm)*		
Recommended	Illuminance mW/cm ²	100	100	100	100	
conditions	Irradiation time s	80	80	80	80	
	Estimated light intensity mJ/cm ²	8,000	8,000	8,000	8,000	
Density at 23	°C g/cm ³	1.08	1.05	1.08	1.14	
Hardness Du	urometer A	24	28	37	33	
Tensile stren	gth MPa	2.8	2.8	4.1	1.9	
Elongation at	break %	250	210	240	170	
Sticky force 200 mm/min MPa		1.30	0.62	2.07	0.40	
Tensile lap-shear strength (glass/glass) t=230 µm MPa		8.5	7.0	10.8	5.9	
Atmospheric air cure		Impossible	Impossible	Impossible	Impossible	
Refrigeration	storage	Unnecessary	Unnecessary	Unnecessary	Unnecessary	

* When cured with a high-pressure mercury lamp, no adhesive strength develops.

Sticky force measurement method

■ Sticky force of STP-103-UV after heat aging

(Not specified values)

Test method:

2. The probe is then peeled off at a rate of 200 mm/min. Sticky force calculates the maximum strength taken to pull a part the probe from material sample. Surface area of the probe (that makes contact with material sample) needs to be calculated by unit area and this value is the sticky force.

1. The tip of the probe is pressed against the sample of silicone with a force of 1.0 MPa for 15 seconds.

Transcriptional properties of the STP series

Radical Polymerization Type Polyimide Silicone

- The SMP-7000 series is a UV-curable polyimide silicone.
- This is an environmentally friendly product that is a solvent-free type and does not contain halogen.
- It can be used as a coating or adhesive.

General properties

	Product name	SMP-7004	SMP-7014	SMP-7015	SMP-7004-3S	SMP-7014-3S	SMP-7015-3S
Parameter							
Brief descrip	tion		Polyimide silicone		Polyimide silicor	ne, oxygen inhibition	reduced product
Reaction me	chanism		Radical			Radical	
Appearance		P	ale yellow transpare	nt	Pa	le yellow slightly clou	ıdy
Viscosity	mPa⋅s	2,000	10,000	160,000	2,000	10,000	160,000
	UV light source			Metal halide la	amp (365 nm)		
Recommended	Illuminance*1 mW/cm ²	100	100	100	100	100	100
conditions	Irradiation time s	20	20	20	20	20	20
	Estimated light intensity mJ/cm ²	2,000	2,000	2,000	2,000	2,000	2,000
Density at 23	s°C g/cm³	1.00	1.01	1.07	1.00	1.01	1.07
Modulus of e	elasticity MPa	180	180	600	190	200	800
Tensile stren	gth MPa	. 18.8	6.0	19.5	18.2	19.5	18.0
Elongation at	t break %	110	60	50	120	90	50
Moisture transmi	ssivity 40°C x 24 h t=0.8 mm g/cm ²	9.70*2	8.70	6.80	9.90	4.00	6.10
LED-UV (365	5 nm) applicability	Not applicable	Not applicable	Not applicable	Applicable	Applicable	Applicable
Atmospheric	air cure	Impossible	Impossible	Impossible	Possible	Possible	Possible
Refrigeration	storage	Unnecessary	Unnecessary	Unnecessary	Unnecessary	Unnecessary	Unnecessary
*1 Illuminance a	t 365 nm *2 t=1.0 mm						(Not specified values

*1 Illuminance at 365 nm *2 t=1.0 mm

Polyimide silicone

Next-generation super engineering plastics are available only from Shin-Etsu, based on a combination of polyimide resin and silicone resin.

■ Structure

Mechanical toughness combined with flexibility

Test piece preparation method:

under atmospheric opening. 4. Die shear strength is measured.

Substrate

1. The substrate is coated with 15 mg of product. 2. Place the cylinder on it and press it with a finger from above.

3. UV curing is carried out in a metal halide lamp

Cured sheet of SMP-7014

Die share strength test

Parameter	Product name	SMP-7004-3S	SMP-7014-3S	SMP-7015-3S			
Curing UV light source Metal halide lamp (100 mW)							
condition*	Estimated light intensity	2,000 mJ/cm ²					
Die shear	Glass substrate/glass cylinder	18.6	19.1	10.7			
MPa	PET substrate/glass cylinder	—	—	8.0			
* At room ter	At room temperature and open to the atmosphere (Not specified value)						

(Not specified values)

■ Reliability test data of SMP-7014-3S

Test conditions			High temperature exposure test	Constant humidity and constant temperature test	Heat cycle test
Parameter		Initial	150°C × 500 h	60°C/90%RH × 500 h	–30↔70°C (30 min each) 200 cycle
Dia ahaar	Glass substrate/aluminum cylinder	9.1	20.3*	10.3	14.4
Die Sliear MPa	Aluminum substrate/glass cylinder	9.1	20.0	17.3	13.2
IVII a	SUS304 substrate/glass cylinder	7.6	20.3*	18.1	11.9

(Not specified values)

Test method

UV Addition Type Silicone

- A silicone polymer with a vinyl group and a silicone polymer with a H group are cured by a hydrosilylation reaction under a photoactivated catalyst.
- After UV irradiation, curing starts gradually after several minutes to several tens of minutes in a room temperature environment.

Pt cat

- It is best suited for applications where UV-cure radical polymerization reactions, condensation reactions that react with moisture in the air and cure, and addition reactions that react with heat and cure are not available.
 - UV addition reaction

Precautions when using

It does not cure immediately after UV irradiation.
 Contact with certain compounds may cause poor cure or adhesion,

so caution should be exercised when using the product.

Cure inhibition

When using addition-cure liquid silicone rubber products, it is important that the user have a good understanding of the problems of cure inhibition. The substances that can cause cure inhibition do so in one of the two following ways.

Causes of poor curing

- The platinum catalyst forms complexes with certain other compounds, and the catalytic action is inhibited.
- 2. The curing agent becomes contaminated with substances it can react with, and the curing agent is consumed.

Cure inhibitors

- Organic compounds that contain elements which include nitrogen, phosphorus and sulfur.
- · Ionic compounds of heavy metals such as tin, lead, mercury, bismuth and arsenic
- Organic compounds that contain unsaturated groups, such as acetylene groups

Substances that can react with curing agents

- Alcohol, water.
- Organic acids such as carboxylic acid.

Specific examples of cure inhibition

- Organic rubber: vulcanized rubber, anti-aging agent (e.g. rubber gloves)
- Epoxy & urethane resin: amine- and isocyanate-based curing agents
- Condensation-cure liquid silicone rubber: use of tin-based catalysts in particular
- Soft PVC: plasticizers, stabilizers
- Solder flux
- Engineering plastics: flame retardants, heat resistance improvers, UV absorbers
- Moisture that has been absorbed by materials which are
 in contact with the uncured material
- Outgassing from solder resist or PCB (caused by heating when curing the silicone)

Use of UV addition type (process reversal is possible)

Point By utilizing a property that does not cure immediately after UV irradiation, it is possible to laminate and fix parts after UV irradiation. After that, it is cured at room temperature, which is expected to reduce the heating stress compared to the heat cure type.

UV Addition Type Optical Bonding Silicones (LOCA)

- Lamination after UV irradiation is possible.
- LOCA curability can be ensured even in areas not irradiated with UV rays.

General properties

Doramator		Product name	KER-4530	KER-4551	KER-4531	KER-4532	KER-4580		
Priof description									
Brief descript	tion		Low viscosity, gel	Medium viscosity, gel	Medium viscosity, gel	High viscosity, gel	Thixotropic, gel		
Reaction med	chanism		Addition	Addition	Addition	Addition	Addition		
Appearance			Colorless transparent	Colorless transparent	Colorless transparent	Colorless transparent	Colorless slightly cloudy		
Viscosity		mPa⋅s	4,000	10,000	25,000	95,000	4,000		
Refractive ind	dex		1.41	1.40	1.41	1.41	1.44		
	UV ligh	t source			UV-LED (365 nm)				
Recommended	Illumin	ance mW/cm ²	100	100	100	100	100		
conditions	Irradiation time s		30	30	30	30	10		
	Estimated light intensity mJ/cm ²		3,000	3,000	3,000	3,000	1,000		
Curing condi	tions aft	er UV irradiation	23°C × 24 h						
Density at 23	°C	g/cm ³	0.97	0.97	0.97	0.97	1.04		
Hardness		Durometer A	5	NA	NA	NA	NA		
That uness		Penetration	NA	30	30	35	37		
Tensile stren	gth	MPa	0.3	NA	NA	NA	0.2		
Elongation at	break	%	550	1,200	NA	NA	660		
Cross adhesi	on strer	gth t=230 µm MPa	0.5	0.3	0.3	0.3	0.4		
Light transmi	ssivity 4	400 nm, t=310 μm %	> 99	> 99	> 99	> 99	94		
LED-UV (365	i nm) ap	plicability	Applicable	Applicable	Applicable	Applicable	Applicable		
Atmospheric	air cure		Possible	Possible	Possible	Possible	Possible		
Refrigeration	storage		Necessary	Necessary	Necessary	Necessary	Necessary		

Lamination process using the "delayed curing" property of the UV addition type

Point When UV addition (delayed cure) type is used, UV irradiation is performed first, and lamination can be done later. As a result, LOCA curability can be ensured even in areas not irradiated with UV rays.

■ Heat resistance test result of KER-4551

Conditions		Initial	95°C × 1,000 h	85°C/85%RH × 1,000 h	40°C⇔85°C/h × 1,000 cycles
Yellow index*		-0.20	0.21	0.24	0.31
Light transmissivity	400 nm, t=310 µm %	> 99	> 99	> 99	> 99
	L*	103.0	102.6	102.6	102.6
Color	a*	-0.00	-0.06	-0.07	-0.01
	b*	-0.11	0.14	0.16	0.18
Hardness Penetration		32	30	32	29
Cross adhesion strength (glass/glass) t=230 μm MPa		0.42	0.41	0.42	0.39

■ Measurement method of cross adhesion strength

(Not specified values)

Test method:

Two sheets of glass are stuck together in a cross shape, then the force required to pull them apart is measured. Adhesion area: 500 mm^2 ($25 \text{ mm} \times 20 \text{ mm}$) Pulling speed: 5 mm/min

Method for measuring color shade

Test method: measured using two glass plates as blanks Coating thickness: 310 µm Measuring instrument: CM-5, a Konica Minolta spectrophotometer

(Not specified values)

General properties

Parameter	Product name	KER-4410	KER-4510	KER-4690-A/B	KER-4691-A/B
Brief descript	tion	Adhesive, room temperature cure	Adhesive, low temperature cure	Non-adhesive, high definition transfer	Non-adhesive, high definition transfer
Reaction med	chanism	Addition	Addition	Addition	Addition
Appearance		Colorless slightly cloudy	Colorless transparent	Colorless transparent	Colorless transparent
Viscosity	mPa⋅s	59,000	49,000	3,000	80,000
	UV light source		UV-LED	(365 nm)	
Recommended	Illuminance mW/cm ²	100	100	100	100
conditions	Irradiation time s	30	30	30	30
	Estimated light intensity mJ/cm ²	3,000	3,000	3,000	3,000
Curing condit	tions after UV irradiation	80°C × 1 h or 23°C × 24 h	60°C × 1 h	23°C × 24 h	23°C × 24 h
Density at 23	°C g/cm³	1.06	1.04	1.03	1.09
Hardness Du	ırometer A	15	50	56	42
Tensile stren	gth MPa	2.3	6.6	7.9	6.2
Elongation at	break %	350	530	110	420
Tensile lap-sl	hear strength MPa	1.6 (AL/AL) 1.7 (PBT/PBT) 1.4 (PPS/PPS)	2.2 (GL/GL)	NA	NA
Light transmi	ssivity 400 nm, t=2.0 mm %	NA	87	90	NA
Cure shrinka	ge %			> 0.1	> 0.1
Atmospheric	air cure	Possible	Possible	Possible	Possible
Refrigeration	storage	Necessary	Necessary	Unnecessary	Unnecessary

(Not specified values)

■ KER-4410 lap-shear durability test data (substrate PPS/PPS)

■ Hardness change by UV light source of KER-4410

Elapsed time after Estimated light UV irradiation Light intensity mJ/cm ² source		15 min	1 h	2 h	3 h	5 h	7 h	24 h
LED-UV (365 nm)	3,000		Gel	0	1	5	7	11
	8,000	Liquid		1	3	6	7	12
	12,000			1	3	6	7	12
	3,000			0	2	6	7	12
Metal halide lamp	8,000	Liquid	id Gel	0	0	3	6	12
	12,000			0	0	2	6	12

(Not specified values)

Comparative shrinkage data for heat addition curing type (KE-106) and UV addition curing type (KER-4690-A/B)

Test method:

1. The KE-106 (heat curing type) and KER-4690-A/B are poured into a mold 100 mm long, 100 mm wide, and 2 mm thick, respectively, and cured.

Curing condition: KE-106 150°C x 30 min, KER-4690-A/B 200 mJ per cm² UV-LED (365 nm)

2. The length after curing is measured, and the shrinkage rate is determined from the difference before curing.

Test piece left: KE-106 right: KER-4690-A/B

■ KER-4690-A/B results of heat resistance experiments

P	roduct name	KE-	106	KER-4690-A/B		
Parameter		Before curing	After curing	Before curing	After curing	
	Up	99.0	96.4	99.1	99.1	
The length of	Down	99.5	97.0	99.3	99.2	
the four sides	Left	99.5	97.0	99.8	99.7	
mm	Right	100	97.2	100.8	100.8	
	Average	99.5	96.9	99.8	99.7	
Shrinkage percenta	age %	2	.6	0.05		
Coefficient of linear co	ontraction %	2	.6	0.1		

General properties

		Product name	KER-4951	KER-4952-A/B	GUV-300	GUV-500	SCR-4016-A/B
Parameter							
Brief descrip	tion		Gel	Gel	Thermal interface material	Thermal interface material	High hardness, Gas barrier
Reaction mee	chanism		Addition	Addition	Addition	Addition	Addition
Appearance			Colorless transparent	Colorless transparent	White	White	Colorless transparent
Viscosity		mPa⋅s	600	900/600	154,000	311,000	260
Refractive in	dex		1.42	1.42	NA	NA	1.52
Mix ratio			NA	A:B = 100:100	NA	NA	A:B = 100:100
	UV ligh	t source			UV-LED (365 nm)		
Recommended	Illumin	ance mW/cm ²	100	100	100	100	100
conditions	Irradiat	ion time s	50	20	60	60	30
	Estimated light intensity mJ/cm ²		5,000	2,000	6,000	6,000	3,000
Curing condi	tions aft	er UV irradiation	23°C x 24 h	23°C x 24 h	25°C x 1 h	25°C x 1 h	80°C x 1 h
Density at 23	°C	g/cm ³	0.97	0.99	2.98	3.23	—
		Shore D	NA	NA	NA	NA	68
Hardness		Durometer A	NA	NA	NA	NA	NA
		Penetration	60	60	NA	NA	NA
Modulus of e	lasticity	G' 0.2 mm Pa	NA	NA	38,730	30,360	NA
Tensile stren	gth	MPa	NA	NA	NA	NA	NA
Elongation at	break	%	NA	NA	NA	NA	NA
Tensile lap-shea	ar strengtl	n (Al/Al) t=2.0 mm MPa	NA	NA	NA	NA	11.0
Light transmi	ssivity 4	400 nm, t=2.0 µm %	99	99	NA	NA	89.7
Thermal con	ductivity	W/m·k	NA	NA	3.1	5.1	NA
Atmospheric	air cure		Possible	Possible	Possible	Possible	Possible
Refrigeration	storage		Necessary	Unnecessary	Necessary	Necessary	Unnecessary

■ UV curability (thickness dependence) of GUV-300

100 mW/cm²@1 min irradiation \rightarrow leave under 25°C

SCR-4016-A/B curability data

* Only SCR-4016-A/B is irradiated with UV-light (365 nm UV LEDs: 3,000 mJ/cm²)

SCR-4016-A/B sulfurization test data

(Not specified values)

Combination of Radical and Condensation Type Silicone

- The portions not irradiated with UV rays are also curable by reaction with moisture in the air while producing by-products (outgas).
- Depending on the type of reaction by-product,

it is classified into a type such as dealcoholization type, deacetone type.

■ Shaded section cure test

Point

Curability can be ensured even in areas not irradiated with UV rays.

One side of a sample placed in an aluminum petri dish with a depth of 10 mm was covered with aluminum foil, and UV irradiation was performed. Removed the aluminum foil, placed the aluminum petri dish in a container, and cured at $23\pm2^{\circ}C/50\pm5\%$ RH for 0, 1, 3, 5, or 7 days to check the hardness. The container was covered with aluminum foil so that no light would impinge on the container.

UV irradiation site

•

7-day curing

Curability test data

Product name Parameter		KE-3431								
Curing period	0 0	lay	1 c	lay	3 d	ays	5 d	ays	7 d	ays
UV irradiation	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No
Hardness*	A26		A40	C8	A45	A19	A50	A30	A51	A34

* Hardness: A = Durometer A C = Asker C

(Not specified values)

Changes in UV irradiation intensity and adhesion strength of KE-3432

	Product name	KE-3432					
	UV irradiation intensity/ time	Storage period	Tensile lap-shear strength MPa				
		30 min	0.02				
	100 W/20 c	1 day	0.4				
	100 10/20 5	3 days	0.5				
		7 days	1.1				
		30 min	0.1				
	400 W/5 c	1 day	0.2				
400 1	400 11/3 5	3 days	0.8				
		7 days	1.4				

(Not specified values)

Light source and cumulative amount of light (mJ/cm²)

General properties

Parameter	Product name	KE-4835	KE-3431	KE-3432		
Brief descrip	tion	Adhesion/fixing	Adhesion/fixing	Adhesion/fixing		
Reaction me	chanism	Combination of radical and condensation	Combination of radical and condensation	Combination of radical and condensation		
Appearance		Creamy white translucent	Creamy white translucent	Creamy white translucent		
By-product g	as	Alcohol	Acetone	Acetone		
Viscosity	mPa⋅s	6,000	30,000	10,000		
	UV light source		Metal halide lamp			
Recommended	Illuminance* mW/cm ²	100	100	100		
conditions	Irradiation time s	20	20	20		
	Estimated light intensity mJ/cm ²	2,000	2,000	2,000		
Curing condi	tions after UV irradiation	23°C/50%RH x 3 days	23°C/50%RH x 7 days			
Density at 23	°C g/cm³	1.01	1.08	1.06		
Hardness Du	urometer A	27	54	52		
Tensile stren	gth MPa	1.1	2.7	2.6		
Elongation at	break %	105	80	75		
Tensile lap-shear	strength (glass/glass) t=2.0 mm MPa	0.3	1.3	1.4		
LED-UV (365	i nm) applicability	Applicable	Applicable	Applicable		
Atmospheric	air cure	Possible	Possible	Possible		
Refrigeration	storage	Unnecessary	Necessary	Necessary		

* Illuminance at 365 nm

(Not specified values)

\blacksquare Curing period and cure shrinkage

Product name Parameter		KE-3431		KE-3432			
Curing period	1 day	3 days	7 days	1 day	3 days	7 days	
Cure shrinkage %	1.8	2.2	2.3	1.2	1.7	1.9	

(Not specified values)

■ Cure properties of KE-3431 according to UV irradiation conditions (23°C/50% RH)

Packaging Options / Product Index

Radical Polymerization Type

UV Addition Type

Combination of Radical and Condensation Type

Product name	Packaging	RoHS*	Page
FE-90-UV	50 g, 100 g (brown glass bottle) / 1 kg (black bottle)	0	P7
GUV-300	500 g (round can) / 900 g (cartridge) / 1 kg (round can)	0	P15
GUV-500	500 g (round can) / 900 g (cartridge) / 1 kg (round can)	0	P15
KE-3431	330 mL (cartridge)	0	P17
KE-3432	100 g (tube)	0	P17
KE-4835	330 mL (cartridge)	0	P17
KER-4000-UV	100 g (brown glass bottle)	0	P7
KER-4301-UV	30 g (brown syringe) / 50 g, 100 g (brown glass bottle)	0	P8
KER-4302-UV	30 g (brown syringe) / 50 g, 100 g (brown glass bottle)	0	P8
KER-4303-UV	30 g (brown syringe) / 50 g, 100 g (brown glass bottle)	0	P8
KER-4304-UV	30 g (brown syringe) / 50 g, 100 g (brown glass bottle)	0	P8
KER-4320-UV	30 g (brown syringe) / 50 g, 100 g (brown glass bottle)	0	P8
KER-4410	30 g (brown syringe) / 50 g, 100 g (brown glass bottle) / 1 kg (black plastic bottle)	0	P14
KER-4510	30 g (brown syringe) / 50 g, 100 g (brown glass bottle) / 1 kg (black plastic bottle)	0	P14
KER-4530	30 g (brown syringe) / 50 g, 100 g (brown glass bottle) / 1 kg (black plastic bottle)	0	P13
KER-4531	30 g (brown syringe) / 50 g, 100 g (brown glass bottle) / 1 kg (black plastic bottle)	0	P13
KER-4532	30 g (brown syringe) / 50 g, 100 g (brown glass bottle) / 1 kg (black plastic bottle)	0	P13
KER-4551	30 g (brown syringe) / 50 g, 100 g (brown glass bottle) / 1 kg (black plastic bottle)	0	P13
KER-4580	30 g (brown syringe) / 50 g, 100 g (brown glass bottle) / 1 kg (black plastic bottle)	0	P13
KER-4690-A/B	50 g (brown glass bottle) / 500 g (brown plastic bottle)	0	P14
KER-4691-A/B	50 g (brown glass bottle) / 1 kg (black plastic bottle)	0	P14
KER-4700-UV	50 g, 100 g (brown glass bottle)	0	P7
KER-4700BK-UV	50 g, 100 g (brown glass bottle)	0	P7
KER-4800-UV	50 g, 100 g (brown glass bottle)	0	P7
KER-4910-UV	50 g, 100 g (brown glass bottle) / 1 kg (square can)	0	P7
KER-4951	100g (brown glass bottle) / 1 kg (black plastic bottle)	0	P15
KER-4952-A/B	100g (brown glass bottle) / 1 kg (black plastic bottle)	0	P15
KUV-3433-UV	100 g (brown glass bottle) / 1 kg (square can)	0	P7
STP-102-UV	100 g (brown glass bottle)	0	P10
STP-103-UV	100 g (brown glass bottle)	0	P10
STP-104-UV	100 g (brown glass bottle)	0	P10
STP-106T-UV	100 g (brown glass bottle)	0	P10
SCR-4016-A/B	100 g (brown glass bottle) / 1 kg (black plastic bottle)	0	P15
SMP-7004	30 g (brown syringe) / 100 g, 0.8 kg (brown glass bottle)	0	P11
SMP-7004-3S	30 g (brown syringe) / 100 g, 0.8 kg (brown glass bottle)	0	P11
SMP-7014	30 g (brown syringe) / 100 g (brown glass bottle) / 0.8 kg (brown bottle)	0	P11
SMP-7014-3S	30 g (brown syringe) / 100 g (brown glass bottle) / 0.8 kg (brown bottle)	0	P11
SMP-7015	30 g (brown syringe) / 100 g (brown glass bottle)	0	P11
SMP-7015-3S	30 g (brown syringe) / 100 g (brown glass bottle)	0	P11

* 🔿 : This indicates that none of the six RoHS-prohibited substances (Cd, Cr6+, Hg, Pb, PBB, PBDE) are used intentionally as ingredients.

Handling precautions

- The cure properties, physical properties, and adhesiveness of UV-cure products may vary depending on the wavelength and intensity of the light source, the irradiation angle, and the thickness of the material. In particular, increasing the intensity and shortening the irradiation time can have significant effects on the material's physical properties, even if the cumulative light dose is the same. Be sure to experiment and determine which curing conditions will work best.
- 2. The UV dose required to cure the material completely will vary depending on the amount applied and the application area.
- Products that cure via radical polymerization should be cured under nitrogen atmosphere. Sections exposed to air may not cure. These products are extremely sensitive to light, and should thus be handled in a "yellow room" environment.
- Addition-cure liquid silicone rubber products may not cure properly if they are contaminated with or come in contact with certain cure-inhibiting substances (e.g. sulfur, phosphorus, nitrogen compounds, water, organometallic salts).
- Condensation-cure products cure by reacting with moisture in the air, and thus curing speed may vary depending on conditions (e.g. temperature and humidity) in the area where they are used.
- Condensation-cure liquid silicone rubber products should not be used in places where completely airtight conditions will be created.
- 7. Use of these products in hot or humid conditions may cause improper curing or poor adhesion.
- 8. Products may yellow over time, but their other characteristics will not be affected.

Precautions when using

- 1. Wear protective glasses and protective gloves when using these products, and be sure the work area is well ventilated.
- 2. Be sure to clean the substrate to remove dirt, grime, moisture and oil from the surface.
- When using two-component products, be sure to measure, mix, stir and deaerate thoroughly. If these steps are not done properly, it may adversely affect the properties of the rubber.
- 4. When using an air gun applicator, be sure to set the pressure at a safe and suitable level, around 0.2–0.3 MPa MAX.

Safety and hygiene

- Be sure there is adequate ventilation when using condensation-cure liquid silicone rubber products. As condensation-cure liquid silicone rubber products cure, alcohol-cure products release methanol and acetone-cure products release acetone. If you experience unpleasant symptoms when using these products, move to an area with fresh air.
- 2. Uncured liquid silicone rubber products may irritate skin and mucous membranes. Take care to avoid eye contact or prolonged contact with the skin. In case of accidental eye contact, immediately flush with water for at least 15 minutes and then seek medical attention. In case of skin contact, wipe off immediately with a dry cloth and then wash thoroughly with soap and water. Contact lens wearers must take special care when using liquid silicone rubber: if uncured liquid silicone rubber enters the eye, the contact lens may become stuck to the eye.
- 3. Never touch or rub the eyes while working with these products. Users should wear safety glasses and take other appropriate steps to protect their safety.
- 4. Keep out of reach of children.
- 5. Be sure to read the Safety Data Sheets (SDS) for these products before use. SDS are available from the Shin-Etsu Sales Department.

Precautions related to storage

- Avoid exposure to direct sunlight and store at room temperature (1°C-30°C). Certain products must be kept at lower temperatures. Details can be found on the product label, etc.
- 2. Once products have been opened, the entire contents should be used at one time whenever possible. If some remains, be sure to seal the container completely.

Silicone Division Sales and Marketing Department ${ m I\!N}$

Marunouchi Eiraku Bldg., 4-1, Marunouchi 1-chome, Chiyoda-ku, Tokyo 100-0005, Japan Phone : +81-(0)3-6812-2410 Fax : +81-(0)3-6812-2415

Shin-Etsu Silicones of America, Inc.

1150 Damar Drive, Akron, OH 44305, U.S.A. Phone : +1-330-630-9860 Fax : +1-330-630-9855

Shin-Etsu do Brasil Representação de Produtos Químicos Ltda.

Rua Coronel Oscar Porto, 736 - 8°Andar - Sala 84, Paraíso São Paulo - SP Brasil CEP: 04003-003 Phone : +55-11-3939-0690 Fax : +55-11-3052-3904

Shin-Etsu Silicones Europe B.V.

Bolderweg 32, 1332 AV, Almere, The Netherlands Phone : +31-(0)36-5493170 Fax : +31-(0)36-5326459 (Products & Services: Products for Cosmetics Application)

Germany Branch

Kasteler Str. 45, 65203 Wiesbaden, Germany Phone : +49-(0)611-71187290 (Products & Services: Products for Industrial Applications)

Shin-Etsu Silicone Korea Co., Ltd.

GT Tower 15F, 411, Seocho-daero, Seocho-gu, Seoul 06615, Korea Phone : +82-(0)2-590-2500 Fax : +82-(0)2-590-2501

Shin-Etsu Silicone International Trading (Shanghai) Co., Ltd.

29F Junyao International Plaza, No.789, Zhao Jia Bang Road, Shanghai 200032, China Phone : +86-(0)21-6443-5550 Fax : +86-(0)21-6443-5868

Guangzhou Branch

Room 2409-2410, Tower B, China Shine Plaza, 9 Linhexi Road, Tianhe, Guangzhou, Guangdong 510610, China Phone : +86-(0)20-3831-0212 Fax : +86-(0)20-3831-0207

- The data and information presented in this catalog may not be relied upon to represent standard values. Shin-Etsu reserves the right to change such data and information, in whole or in part, in this catalog, including product performance standards and specifications without notice.
- Users are solely responsible for making preliminary tests to determine the suitability of products for their intended use.
 Statements concerning possible or suggested uses made herein may not be relied upon, or be construed, as a guaranty of no patent infringement.
- For detailed information regarding safety, please refer to the Safety Data Sheet (SDS).
- The silicone products described herein have been designed, manufactured and developed solely for general industrial use only; such silicone products are not designed for, intended for use as, or suitable for, medical, surgical or other particular purposes. Users have the sole responsibility and obligation to determine the suitability of the silicone products described herein for any application, to make preliminary tests, and to confirm the safety of such products for their use.

Shin-Etsu Silicone Taiwan Co., Ltd.

Hung Kuo Bldg. 11F-D, No. 167, Tun Hua N. Rd., Taipei, 105406 Taiwan, R.O.C. Phone : +886-(0)2-2715-0055 Fax : +886-(0)2-2715-0066

Shin-Etsu Singapore Pte. Ltd.

1 Kim Seng Promenade #15-05/06 Great World City, Singapore 237994 Phone : +65-6743-7277 Fax : +65-6743-7477

Shin-Etsu Silicones Vietnam Co., Ltd.

Unit 4, 11th Floor, A&B Tower, 76A Le Lai Street, Ben Thanh Ward, District 1, Ho Chi Minh City, Vietnam Phone : +84-(0)28-35355270

Shin-Etsu Silicones India Pvt. Ltd.

Unit No. 403A, Fourth Floor, Eros Corporate Tower, Nehru Place, New Delhi 110019, India Phone : +91-11-43623081 Fax : +91-11-43623084

Shin-Etsu Silicones (Thailand) Ltd.

7th Floor, Harindhorn Tower, 54 North Sathorn Road, Silom Bangrak, Bangkok 10500, Thailand Phone : +66-(0)2-632-2941 Fax : +66-(0)2-632-2945

- Users must never use the silicone products described herein for the purpose of implantation into the human body and/or injection into humans.
- Users are solely responsible for exporting or importing the silicone products described herein, and complying with all applicable laws, regulations, and rules relating to the use of such products. Shin-Etsu recommends checking each pertinent country's laws, regulations, and rules in advance, when exporting or importing, and before using the products.
- Please contact Shin-Etsu before reproducing any part of this catalog. Copyright belongs to Shin-Etsu Chemical Co., Ltd.

	MS CM003	The Development and Manufacture of Shin-Etsu Silicones are based on the following registered international quality and environmental management standards.			
		Gunma Complex	ISO 9001 (JCQA-0004	ISO 14001 JCQA-E-0002)	
		Naoetsu Plant	ISO 9001 (JCQA-0018	ISO 14001 JCQA-E-0064)	
	MS CM009	Takefu Plant	ISO 9001 (JQA-0479	ISO 14001 JQA-EM0298)	
			Image: Constraint of the constraint	Image: Second system Image: Second system The Development and Man Shin-Etsu Silicones are ba following registered internative and environmental management Image: Second system Image: Second system Second system Image: Second system Image: Second system Second system	Image: Second

"Shin-Etsu Silicone" is a registered trademark of Shin-Etsu Chemical Co., Ltd. https://www.shinetsusilicone-global.com/